Вход/Регистрация
Льюис Кэрролл: Досуги математические и не только
вернуться

Кэрролл Льюис

Шрифт:

Например, если нам нужно разделить число 5984407103826 на 6997 (то есть на 7t3 – 3), то вся задача, подготовленная для решения, будет выглядеть так:

Чтобы решить этот пример, разделим первый период на h, внесём частное от этого деления в первый столбец под двойной линией и поместим остаток от него над вторым периодом, где он будет выполнять роль префикса к этому периоду. Ко второму периоду с его префиксом прибавим увеличенное в k раз число из первого столбца и внесём результат в верхнюю ячейку второго столбца [под двойной чертой]. Если это число не меньше, чем наш делитель, то найдём, какое количество раз оно вмещает делитель и внесём это количество в первый столбец и его же, увеличенное в k раз, во второй; затем проведём черту под вторым столбцом и приплюсуем это новое значение, вычитая из результата число, только что введённое в первую колонку, увеличенное в tn раз; а затем просуммируем первую колонку, вписывая результат в графу «Частное». Если число вверху второй колонки меньше, чем делитель, то число в первой колонке можно вносить в «Частное» сразу же. Число, внесённое в графу «Частное», и число в самом низу второй колонки суть наши частное и остаток, которые получились бы, если бы делимое оканчивалось своим вторым периодом. Теперь возьмём число, что в самом низу второй колонки, как новый второй период, и третий период как новый второй период и продолжим как ранее.

Верхний пример, решаемый в соответствие с этим Правилом, будет выглядеть так:

Ход рассуждения при этом следующий.

Делим число 5984 на 7, внося частное, 854, в первый столбец и помещая остаток, 6, над вторым периодом. Затем прибавляем к 6407 утроенное 854, внося результат во второй столбец следующим образом. «7 и 12 будет 19». Вносим 9, 1 в уме. «1 и 15 будет 16». Вносим 6, 1 в уме. «5 и 24 будет 29». Вносим 9, 2 в уме, которое, прибавленное к префиксу 6, даёт 8, которое также вносим. Отметив для себя, что это 8969 не меньше, чем наш делитель, и что оно содержит этот делитель единожды, вносим 1 в первый столбец, трижды 1 — во второй, затем проводим снизу черту и приплюсовываем это новое значение, не забывая вычесть из результата усемерённое t3, то есть 7000; в итоге получаем 1972. Затем суммируем первый столбец снизу вплоть до двойной черты и вносим результат, 855, в графу «Частное». Теперь берём 1972 как новый первый период, а третий период, 103, как новый второй период, и продолжаем как ранее следующим образом [8] . Проводим двойную черту под 1972 и делим его на 7, внося частное от деления, 281, под двойную черту, а остаток, 5, ставя над третьим периодом. Затем прибавляем к 5103 утроенное 281, внося результат, 5946, в третий столбец; отмечаем для себя, что он меньше делителя. Затем суммируем второй столбец снизу вплоть до ближайшей двойной черты и вносим результат, 281, в графу «Частное». Теперь берём 5946 как новый первый период, а конечный период, 826, как новый второй период, и продолжаем как ранее следующим образом. Проводим двойную черту по 5946 и делим его на 7, внося частное, 849, под двойную черту, а остаток, 3, ставя над конечным периодом. Теперь прибавляем к 3826 утроенное 849, внося результат, 6373, который, как можно было предвидеть, непременно будет меньше делителя, в ячейку «Остаток». Затем суммируем третий столбец снизу вплоть до ближайшей двойной черты и вносим результат, 849, конечным периодом в графу «Частное».

8

Далее текст до конца этого абзаца и следующий за ним абзац появляются только в составе «Curiosa Mаthematica, часть III»; в статье, отданной в печать, они отсутствовали. Очевидно, автор счёл желательным описать «ход рассуждения» подробнее, чем это было сделано в статье. Мы, со своей стороны, кое-где в примечаниях добавили ещё уточнений.

Было бы неплохо разъяснить действительную сущность трёх процедур, описанных в девятом предложении предыдущего абзаца, а именно 1) вносим 1 в первый столбец, 2) трижды 1 — во второй, 3) приплюсовываем это новое значение, не забывая вычесть 7000. Сущность 2) и 3), взятых в совокупности, заключается в увеличении второго столбца на 3 и в уменьшении его на 7000, то есть в уменьшении его на 7000 – 3, что равняется 6997. Сущность же 1) заключается в оправдании этого 6997, вычтенного, таким образом, из остатка (а последний тем самым оказался сведён к настоящему остатку), добавлением единицы к частному (которое, таким образом, превращается в настоящее частное).

Правило для случая (3) при знаке «+» может быть выведено из вышеизложенного правила простой заменой знака при k. Это, однако, вводит одно новое явление, которое должно быть предусмотрено следующей дополнительной оговоркой.

Когда вы прибавляете ко второму периоду, [взятому вместе] с его префиксом, число из первого столбца, увеличенное в (– k) раз, то есть когда вы вычитаете увеличенное в k раз это число из второго периода, [взятого вместе] с его префиксом, иногда может случиться так, что вычитаемое превосходит уменьшаемое. В этом случае вычитание будет оканчиваться цифрой-минус, которую можно пометить звёздочкой. Теперь ищем, какое количество наших делителей следует прибавить ко второму столбцу, чтобы погасить эту цифру-минус, и вносим это количество, помеченное звёздочкой, в первый столбец, а это кратное нашего делителя — во второй; затем проводим черту под вторым столбцом и приплюсовываем это новое значение.

В качестве примера возьмём новое делимое, но оставим прежний делитель, изменив знак при k, так что делителем станет число 7003 (то есть 7t3 + 3). Наша задача, подготовленная для решения, будет выглядеть так:

По окончании решения вид у неё будет такой:

Начало хода рассуждения таково.

Делим 6504 на 7 и вносим частное от деления, 929, в первый столбец, а остаток, 1, пишем поверх второго периода. Затем вычитаем из 1318 утроенное 929, внося результат во второй столбец следующим образом. «27 из 8 [вычесть] нельзя, но 27 из 28 будет 1». Вносим 1, занятое 2 в уме. «8 из 1 [вычесть] нельзя, но 8 из 11 будет 3». Вносим 3, занятое 1 в уме. «28 из 3 [вычесть] нельзя, но 28 из 33 будет пять». Вносим 5, занятое 3 в уме. «3 из 1 будет минус 2». Вносим его со звёздочкой. Отметив, что для погашения этого минус 2 достаточно будет прибавить делитель единожды, вносим (–1) в первый столбец, а 7003 — во второй; затем проводим черту под вторым столбцом и приплюсовываем это новое значение; в итоге получаем 5534. Затем суммируем первый столбец снизу доверху и вносим результат, 928, в графу «Частное». Теперь берём 5534 как новый первый период, а третий период, 972, как новый второй период, и продолжаем как ранее [9] , следующим образом. Проводим двойную черту под 5534 и делим его на 7, внося частное от деления, 790, под двойную черту, а остаток, 4, ставя над третьим периодом. Затем вычитаем из 4972 утроенное 790, занося результат, 2602, в третий столбец; отмечаем для себя, что он не содержит цифр-минус. Затем суммируем второй столбец снизу вплоть до ближайшей двойной черты и вносим результат, 790, в графу «Частное». Теперь берём 2602 как новый первый период, а конечный период, 526, как новый второй период, и продолжаем как ранее следующим образом. Проводим двойную черту по 2692 и делим его на 7, внося частное, 371, под двойную черту, а остаток, 5, ставя над конечным периодом. Затем вычитаем из 2556 утроенное 371, занося результат, 4413, который, как можно было предвидеть, непременно будет меньше делителя, в ячейку «Остаток». Затем суммируем третий столбец снизу вплоть до ближайшей двойной черты и заносим результат, 371, конечным периодом в графу «Частное».

9

Аналогично текст с этого места и до конца абзаца.

Правила для случая (1) могут быть выведены из вышеизложенного, принимая k = 1, а для случая (2) — принимая h = 1. Ниже я дам решённые примеры, а давать мысленные рассуждения здесь нужды нет.

Приняв k = 1, мы получаем делитель вида htn + 1; выберем делители 11t4 – 1 и 6t5 + 1.

В этом последнем примере нет нужды вносить частное от деления 7239 на 7 в первый столбец; и так легко предвидеть, что число поверх второго столбца будет меньше нашего делителя, так что в первом столбце новых значений не появится; следовательно, мы сразу вносим 1206 в графу «Частное».

Принимая h = 1, получаем делители вида tn ± k; возьмём делители t4 – 7 и t5 + 12.

Первую из этих двух задач я привёл для того, чтобы проиллюстрировать открытый мистером Коллингвудом способ решения для делителей вида tn – k.

Читателю, возможно, интересно будет взглянуть на три способа решения вышеприведённого примера — обычное деление в столбик, способ мистера Коллингвуда и мою версию последнего — ради сравнения того количества усилий, которые каждый из них требует для своего решения:

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: