Шрифт:
И. Н. Розенгауз.
Топливозаправщик
Топливозапра'вщик, бензозаправщик, самоходный или прицепной агрегат для транспортировки жидкого топлива и заправки двигателей летательных аппаратов . На ходовой части Т. (шасси автомобиля, прицепа или полуприцепа с автотягачом) расположены цистерна, насос с приводом, приёмо-раздаточная арматура, топливные фильтры , контрольно-измерительные приборы, кабина с механизмами управления, заземляющее устройство и средства противопожарной защиты. Вместимость цистерн Т. 4000—50000 л. В некоторых случаях Т. используют для заправки топливом танков и др. самоходных машин (главным образом военных), а также в районах, где нет топливозаправочных станций и топливораздаточных колонок .
Топливораздаточная колонка
Топливоразда'точная коло'нка, бензораздаточная колонка, предназначена для измерения и отпуска жидкого топлива в баки транспортных и др. самоходных машин или в тару потребителя. Устанавливается на автозаправочной станции или в пунктах заправки. Для подачи больших объёмов топлива используют центробежные или роторные насосы с электроприводом; для выдачи небольших доз топлива — ручные поршневые или крыльчатые насосы. Отпускаемое топливо измеряется мерными сосудами или объёмными счётчиками и регистрируется контрольным устройством. Т. к. могут иметь ручное, дистанционное и комбинированное управление. На Т. к. с автоматическим управлением выдача топлива производится после того, как в соответствующее гнездо панели вставлен ключ, опущены перфокарта, жетон или монета. Наиболее распространены Т. к. производительностью 5—40 л /мин с минимальной дозой отпуска топлива 2 л (точность измерения ±0,2—0,5% от действительного объёма выданного топлива). Наконечник заправочного шланга и заправляемая машина заземляются.
Н. Ф. Кайдаш.
Топографии барической метод
Топогра'фии бари'ческой ме'тод, метод графического представления давления, температуры, влажности и ветра в тропосфере и стратосфере при помощи карт топографии барической , составленных по данным радиозондирования атмосферы (см. Синоптические карты ) в целях анализа атмосферных процессов и прогноза погоды . Мерой высоты при построении карт барической топографии служит геопотенциал Ф = gz , представляющий работу, совершаемую при поднятии единицы массы воздуха в поле силы тяжести g от исходного уровня с давлением p на высоту z с давлением p1 (z выражено в линейных, а Ф — в динамических метрах).
За единицу геопотенциала принят динамический метр, представляющий собой работу, которую необходимо затратить для подъёма единицы массы воздуха от уровня моря на 1 м на широте 45°. Значение ускорения силы тяжести g для любой широты до высоты 30 км в расчётах геопотенциала принимают постоянной и равной 9,8 м /сек ; Для того чтобы выразить положение изобарической поверхности в единицах работы таким же числом, что и её геометрическая высота z, было введено понятие геопотенциальной высоты Н = z . Геопотенциальные высоты вычисляют по барометрической формуле геопотенциала:
H2 —H1 = 67,44 Tvm lg (p1 /p2 ),
где H1 и H2 — геопотенциальные высоты на нижнем и верхнем уровне, a p1 и p2 —соответственно давление на этих уровнях, Tvm — средняя виртуальная температура слоя воздуха, заключенного между уровнями H1 и H2.
Если высота какой-либо изобарической поверхности отсчитывается от уровня моря, то геопотенциал называется абсолютным, а если от ниже расположенной изобарической поверхности — относительным. Поэтому абсолютный геопотенциал любой изобарической поверхности зависит от давления на уровне моря и средней виртуальной температуры в слое воздуха, заключённого между уровнем моря и интересующей изобарической поверхностью, а относительный геопотенциал — только от Tvm (так как давление на нижнем и верхнем уровнях принимается постоянным).
Карты, на которые нанесены значения абсолютного геопотенциала, температуры и влажности воздуха, направления и скорости ветра на данной изобарической поверхности, называются картами абсолютной барической топографии, а карты с данными относительного геопотенциала — картами относительной барической топографии. На картах абсолютных барических топографии проводятся линии равных значений геопотенциала (обычно через 40 геопотенциальных метров), называемые изогипсами и представляющие собой линии пересечения изобарической поверхности с поверхностями уровня. Поскольку изобарические поверхности в циклонах имеют вогнутую к земной поверхности форму, а в антициклонах — выпуклую, то циклоны и антициклоны на этих картах представляют собой области с замкнутыми изогипсами, соответственно с низкими и высокими значениями геопотенциала в центре. Расстояние между соседними изогипсами пропорционально величине градиента давления и, следовательно, скорости ветра; чем гуще изогипсы, тем больше скорость ветра; направление ветра примерно параллельно изогипсам, причём ветер дует так, что низкое значение давления в Северном полушарии будет слева, а высокое — справа.
На картах относительной барической топографии, характеризующих среднее поле температуры между двумя изобарическими поверхностями, области холода и тепла очерчиваются также изогипсами, при этом местоположение очагов холода чаще всего совпадает с циклонами и ложбинами, а очагов тепла — с антициклонами и гребнями.
Совместный анализ карт абсолютной и относительной барической топографии, а также приземных карт погоды позволяет установить вертикальную структуру барических систем, их возникновение, перемещение и эволюцию, интенсивность переноса теплоты и влаги на различных высотах; по сгущению изогипс на картах абсолютной барической топографии — расположение струйных течений , по сгущению изогипс на картах относительной барической топографии — фронтов атмосферных . На основании такого анализа представляется возможным прогнозировать развитие атмосферных процессов и составлять прогнозы погоды.