Шрифт:
Важные классы топологических пространств получаются наложением так называемых аксиом отделимости. Примером является так называемая аксиома Хаусдорфа, или аксиома T2 , требующая, чтобы любые две различные точки обладали непересекающимися окрестностями. Топологическое пространство, удовлетворяющее этой аксиоме, называется хаусдорфовым, или отделимым. Некоторое время в математической практике встречались почти исключительно хаусдорфовы пространства (например, любое метрическое пространство хаусдорфово). Однако роль нехаусдорфовых топологических пространств в анализе и геометрии постоянно растет.
Топологические пространства, являющиеся подпространствами хаусдорфовых (би) компактных пространств, называются вполне регулярными или тихоновскими. Их тоже можно охарактеризовать некоторой аксиомой отделимости, а именно: аксиомой, требующей, чтобы для любой точки x
Топологические пространства, являющиеся открытыми подпространствами хаусдорфовых компактных, называются локально компактными пространствами. Они характеризуются (в классе хаусдорфовых пространств) тем, что каждая их точка обладает окрестностью с компактным замыканием (пример: евклидово пространство). Любое такое пространство дополняется одной точкой до компактного (пример: присоединением одной точки из плоскости получается сфера комплексного переменного, а из
Отображение f : X ® Y топологическое пространства Х в топологическое пространство Y называют непрерывным отображением, если для любого открытого множества V `I Y множество f—1 (V ) открыто в X . Непрерывное отображение называют гомеоморфизмом, если оно взаимно однозначно и обратное отображение f—1 : Y ® X непрерывно. Такое отображение устанавливает взаимно однозначное соответствие между открытыми множествами топологических пространств Х и Y , перестановочное с операциями объединения и пересечения множеств. Поэтому все топологические свойства (то есть свойства, формулируемые в терминах открытых множеств) этих пространств одни и те же, и с топологической точки зрения гомеоморфные топологические пространства (то есть пространства, для которых существует хотя бы один гомеоморфизм Х ® Y ) следует считать одинаковыми (подобно тому как в евклидовой геометрии одинаковыми считаются фигуры, которые можно совместить движением). Например, гомеоморфны («топологически одинаковы») окружность и граница квадрата, шестиугольника и т.п. Вообще любые две простые (не имеющие двойных точек) замкнутые линии гомеоморфны. Напротив, окружность не гомеоморфна прямой (ибо удаление точки не нарушает связности окружности, но нарушает связность прямой; по той же причине прямая не гомеоморфна плоскости, а окружность не гомеоморфна «восьмёрке»). Окружность не гомеоморфна также и плоскости (выкиньте не одну, а две точки).
Пусть {Хa } — произвольное семейство топологических пространств. Рассмотрим множество Х всех семейств вида {хa }, где xa
Если Х — топологическое пространство, а Y — произвольное множество и если задано отображение p : X ® Y пространства Х на множество Y (например, если Y является фактормножеством Х по некоторому отношению эквивалентности, а p представляет собой естественную проекцию, сопоставляющую с каждым элементом х ^I Х его класс эквивалентности), то можно ставить вопрос о введении в Y топологической структуры, относительно которой отображение p непрерывно. Наиболее «богатую» (открытыми множествами) такую структуру получают, полагая открытыми множествами в Y все те множества V `I Y, для которых множество f– 1 (V ) `I Х открыто в X . Снабженное этой топологической структурой множество Y называется факторпространством топологического пространства Х (по отношению к p ). Оно обладает тем свойством, что произвольное отображение f : Y ® Z тогда и только тогда непрерывно, когда непрерывно отображение
Пусть Х — топологическое пространство, А — его подпространство и f : A ® Y — непрерывное отображение. Предполагая топологические пространства Х и Y непересекающимися, введём в их объединении Х `E Y топологическую структуру, считая открытыми множествами объединения открытых множеств из Х и Y . Далее, введём в пространстве Х `E Y наименьшее отношение эквивалентности, в котором a ~ f(a) для любой точки a ^I А . Соответствующее факторпространство обозначается символом X `E f Y , и о нём говорят, что оно получено приклеиванием топологического пространства Х к топологическому пространству Y по А посредством непрерывного отображения f . Эта простая и наглядная операция оказывается очень важной, так как позволяет получать из сравнительно простых топологических пространств более сложные. Если Y состоит из одной точки, то пространство Х `E f Y обозначается символом Х/А и о нём говорят, что оно получено из Х стягиванием А в точку. Например, если Х — диск, а А — его граничная окружность, то Х/А гомеоморфно сфере.
2. Равномерная топология
Часть Т., изучающая аксиоматическое понятие равномерной непрерывности, называется равномерной Т. Известное из анализа определение равномерной непрерывности числовых функций непосредственно переносится на отображения любых метрических пространств. Поэтому аксиоматику равномерной непрерывности обычно получают, отталкиваясь от метрических пространств. Подробно исследованы два аксиоматических подхода к равномерной непрерывности, основанных соответственно на понятиях близости и окружения диагонали.