Шрифт:
Судьба вырожденных остатков
Заключительная глава звездной эволюции являет себя в распаде протонов. Хотя истинное время жизни протона опытным путем измерено не было, в данной книге мы принимаем, что типичное время жизни протона составляет тридцать семь космологических декад (десять триллионов триллионов триллионов лет). Когда протоны распадаются внутри звезды, например внутри белого карлика, образовавшаяся энергия пополняет энергетические запасы этой звезды. Наиболее распространенными продуктами этого распада являются позитрон и пион, причем последний мгновенно распадается на высокоэнергетические гамма-лучи. Позитрон быстро находит электрон, и две эти частицы аннигилируют, образуя еще два высокоэнергетических фотона гамма-излучения. Таким образом, в конечном итоге масса покояпротона превращается в гамма-излучение, нагревающее звезду. Следовательно распадающиеся протоны обеспечивают звезду внутренним источником энергии, только вот цена этого невероятно высока: чтобы создать тепло и свет, звезда должна отдать свою собственную массу покоя.
Белый карлик, существующий за счет распада протона, имеет светимость примерно в четыреста ватт: этого едва хватит на то, чтобы поддержать свечение нескольких электрических лампочек. Светимость целой галактики таких звезд в десять триллионов раз меньше светимости нашего Солнца. Даже если сложить мощности излучения всех звезд во всех галактиках, которые в настоящее время попадают в пределы нашего космологического горизонта, получившаяся светимость все равно будет в сто раз меньше светимости нашего Солнца. Да уж, такое будущее вряд ли можно назвать светлым.
Излучение внутри белого карлика будет рассеиваться много раз, прежде чем доберется до поверхности звезды. В эту будущую эпоху температура поверхности белого карлика составит всего 0,06 градусов Кельвина — примерно в сто тысяч раз холоднее Солнца. Так что эти четырехсотваттные лампочки вряд ли сгодятся в качестве настольных. Они испускают излучение, характеристическая длина волны которого равна пяти сантиметрам — приблизительно в пятьдесят тысяч раз длиннее тех волн, которые способен уловить глаз человека.
Во время эволюционной фазы распада протона химический состав белого карлика изменяется до неузнаваемости. Предположим, что мы начали со звезды, состоящей из чистого углерода. Каждое ядро углерода содержит шесть протонов и шесть нейтронов. По мере распада протонов и нейтронов ядра становятся меньше и содержат меньшее количество частиц. В ходе этого процесса исходные ядра углерода сокращаются до одной частицы, и звезда завершает свой жизненный цикл в виде чистого водорода.
Эту простую картину несколько осложняют две вещи. Во-первых, высокоэнергетическое излучение, которое выделяется в результате распада протона, может высвободить из ядер другие протоны и нейтроны. Эти освобожденные частицы, как правило, отказываются от своей вновь обретенной свободы и объединяются с другими ядрами. В среднем, каждый распад протона сопровождается одним переходом дополнительного протона или нейтрона от одного ядра к другому. Таким образом, мы получаем своего рода ядерную чехарду.
Второй проблемой является холодный синтез. Даже при низких температурах, в данном случае не превышающих один градус ниже абсолютного нуля, иногда, из-за принципа неопределенности Гейзенберга, могут синтезироваться ядра. По причине волновой природы частиц определить точное место их положения не представляется возможным. В результате два ядра иногда оказываются достаточно близко друг к другу, чтобы синтезировать более тяжелое ядро. В недрах белого карлика, который в миллион раз плотнее Земли, холодный синтез водорода занимает всего сто тысяч лет, а углерода — около двухсот космологических декад (10 200лет). Таким образом, белые карлики имеют тенденцию сохранять гелиевый состав. Однако приведенные временные интервалы настолько велики, что холодный синтез не оказывает значительного влияния на эволюцию белого карлика во время фазы протонного распада, которая произойдет через 10 37лет. Ясно также и почему холодный синтез не играет хоть сколько-нибудь интересной роли в современной Вселенной.
По мере того как в ходе распада протонов белый карлик продолжает терять массу, его строение претерпевает заметные изменения. Из-за алогичной природы вырожденного вещества радиальный размер белого карлика увеличивается по мере уменьшения его массы. Когда звезда расширяется, ее плотность уменьшается, и вещество, в конечном итоге, перестает быть вырожденным. Этот переход происходит, когда масса звезды уменьшается до массы Юпитера — приблизительно в тысячу раз меньше массы Солнца. На этом этапе эволюции звезда имеет плотность воды и радиус в десять раз меньший, чем у Солнца. Звезда состоит из застывшей массы атомов водорода: этакий огромный шар из ледяного водорода.
После исчезновения вырожденного состояния кристаллический белый карлик продолжает уменьшаться до тех пор, пока не станет настолько маленьким, что более уже не сможет выполнять функции звезды. Этот финальный переход становится концом звездной эволюции. По-настоящему звезда умирает тогда, когда становится прозрачной, когда излучение, распространяющееся внутри звезды может свободно, без рассеивания отрываться от нее. В этот поворотный момент масса звезды составляет всего 10 24граммов — примерно в шесть тысяч раз меньше массы Земли.
Таким образом, большинству звезд на предпоследнем этапе эволюции суждено превратиться в водородную глыбу, размер которой примерно в семьдесят раз меньше Луны. По мере того как процесс распада протона подходит к завершению, эта глыба продолжает испаряться. Таким образом, становится понятна окончательная судьба белых карликов: от них не остается ничего. Вся энергия звезды, в конечном итоге, излучается в межзвездное пространство. И вновь термодинамика, в конечном итоге, побеждает гравитацию.