Вход/Регистрация
Пять возрастов Вселенной
вернуться

Адамс Фред

Шрифт:

С другой стороны, если Вселенная открыта, скорость ее расширения достигает постоянного значения, и гравитация явно проигрывает свое сражение с этим расширением: она уже не может конкурировать с ним. Образование космических структур прекращается на каком-то определенном масштабе, а для продолжения образования черных дыр или любых космических структур возникают серьезные препятствия. Для этого случая вопросы долгосрочного производства энтропии и космологической тепловой смерти Вселенной по-прежнему открыты. И хотя эти перспективы могут показаться довольно унылыми, во Вселенной по-прежнему остается много захватывающих новых возможностей.

Жизнь и смерть позитрония

Вероятно, самым оживленным действом в эпоху вечной тьмы будут процессы с участием атомов позитрония. В отсутствие протонов и нейтронов обычные атомы невозможны. С другой стороны, в относительно больших количествах будут существовать позитроны — положительно заряженные антиматериальные партнеры электронов. Электроны и позитроны могут объединиться в атомные структуры, аналогичные традиционным атомам водорода, состоящим из одного протона и одного электрона. Атом, образованный позитроном и электроном, называется позитронием.

Атомные свойства позитрония заметно отличаются от свойств традиционных атомов в двух отношениях. Поскольку масса позитрона в две тысячи раз меньше массы протона, изменяются орбиты электронов. Таким образом, химия позитрония весьма отличается от химии водорода. Однако гораздо важнее то, что позитрон и электрон могут аннигилировать друг с другом, на что не способны протон и электрон в обычном водородном атоме. Так что судьба атомов позитрония решается в момент их образования. При наличии достаточного времени электрон и позитрон должны аннигилировать друг с другом, образуя крошечный выброс излучения.

Синтез атомов позитрония в земных лабораториях — дело довольно обычное. Обычно эти атомы создаются в низкоэнергетических состояниях и имеют микроскопические размеры, примерно сравнимые с размером обычных атомов. Эти микроскопические атомы позитрония живут лишь крошечную долю секунды, по истечении которой исчезают из Вселенной в результате аннигиляции. Это короткое время жизни, крайне неудовлетворительное для нас, обусловлено крошечным размером, с которым рождаются эти атомы.

К счастью, в очень поздней Вселенной фоновая плотность сильно размыта и образующиеся атомы позитрония имеют орбиты невероятно больших радиусов. Типичный размер позитрония, образованного в эпоху вечной тьмы, составляет триллионы световых лет — больше, чем вся видимая сегодня Вселенная. Предполагается, что образование позитрония этого типа начнется где-то около семьдесят первой космологической декады. Эти огромные атомы рождаются в состояниях относительно высоких энергий по сравнению с микроскопическими атомами позитрония, которые так быстро распадаются. Электрон и позитрон медленно вращаются вокруг друг друга и постепенно отдают чрезвычайно маленькие количества излучения при постоянном уменьшении их орбит. Эти частицы кружатся в экзотическом танце, который в конечном итоге приводит к полному разрушению его участников и абсолютному краху накопленной ими энергии. Атомы позитрония с такими огромными начальными размерами распадаются по истечении довольно долгого промежутка времени — около ста сорока пяти космологических декад. Таким образом, будущая Вселенная содержит окно времени, в течение которого позитроний может образоваться и существовать, до того как произойдет его неизбежное саморазрушение. Середина этого окна приходится примерно на сотую космологическую декаду — время, когда, напоследок вспыхнув, Вселенную покидают черные дыры с галактическими массами.

Здесь возникает важный вопрос: способны ли эти атомы позитрония, или, быть может, еще более необычные атомные структуры будущего, объединиться, образуя хоть какие-то сложные объекты. Возможны ли в этом темном будущем процессы, хотя бы отдаленно напоминающие химические реакции, которые мы видим на Земле сегодня? Достаточно ли ста сорока пяти космологических декад, чтобы произошла какая-либо «биологическая» эволюция? Как выглядели бы формы жизни, существующие в эту эпоху? Эти вопросы остаются без ответа, но именно в них содержится ключ к возможным жизненным процессам в эпоху вечной тьмы.

Образование и окончательное разрушение позитрония представляет собой еще один этап непрерывной борьбы гравитации и термодинамики — противостояние, которое существует и в эпоху вечной тьмы. В эту позднюю эпоху образование позитрония, в сущности, обусловлено электрическим притяжением частиц, хотя силы гравитации могут объединять даже большие группы частиц. Несмотря на то, что, по меркам современной Вселенной, эти атомы позитрония — истинные долгожители, они представляют собой преходящие структуры и все равно распадутся, превратясь в излучение. Таким образом, — неизбежная гибель позитрония — это еще одна победа термодинамики и производства энтропии. И вновь, в конечном итоге, торжествует беспорядок.

Бесконечная аннигиляция

Иллюстрацией к тому, как Вселенная продолжает действовать, хотя и замедляется, служит простой процесс аннигиляции частиц. В результате аннигиляции масса-энергия превращается в излучение и тем самым обеспечивает источник энергии для Вселенной. Аналогичным образом, в наши дни Солнце является источником энергии для Земли, а звезды — для Вселенной, хотя и в очень разных масштабах.

Вселенная будущего, например, содержит и электроны, и их антиматериальные двойники — позитроны. Когда эти частицы подходят друг к другу достаточно близко, происходит аннигиляция и вся их масса-энергия высвобождается во всплеске излучения. Во время этой вспышки образуется энтропия. В случае с позитронами и электронами, как описано выше, эти частицы перед окончательной аннигиляцией нередко образуют атомы позитрония. Однако если рассматривать этот процесс в масштабе времени, значительно превышающем время жизни позитрония, равное ста сорока пяти космологическим декадам, нет нужды переживать из-за этого мимолетного промежуточного этапа. Другие частицы, или пары частиц, тоже могут дожить до эпохи вечной тьмы и аннигилировать аналогичным образом. До этого времени вполне могут дожить и принять участие в будущей аннигиляции, например, слабо взаимодействующие частицы темной материи.

Закончится ли когда-нибудь во Вселенной запас частиц, которые могут аннигилировать? Ответ на этот вопрос объясняет многое и служит хорошей иллюстрацией к почти бесконечной природе этой космической конечной игры. Полная доля плотности энергии Вселенной, которая аннигилирует в эпоху вечной тьмы, есть малая и известная величина. Аннигиляция частиц дает лишь конечное количество энергии (в пределах данной области Вселенной) за все время эпохи вечной тьмы. Скорость аннигиляции заметно уменьшается по мере того, как Вселенная расширяется и становится более разреженной, однако аннигиляция частиц продолжается, пока существует Вселенная. Нет такого момента в будущем, когда Вселенная достигает состояния, в котором частицы перестают аннигилировать. Какой бы старой ни стала Вселенная, в ней всегда остается место сопровождающимся вспышками аннигиляционным событиям, которым еще только предстоит произойти и, пусть незначительно и ненадолго, осветить темное небо.

  • Читать дальше
  • 1
  • ...
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: