Шрифт:
Но даже в рамках процессов, разрешенных законами физики, многие события, которые могли бы произойти в принципе, на деле никогда не происходят. Одна общая причина состоит в том, что они просто требуют слишком долгого времени, и первыми происходят другие процессы, которые их опережают. Хорошим примером этой тенденции служит процесс холодного синтеза. Как мы уже отмечали в связи с ядерными реакциями в недрах звезд, самым стабильным из всех возможных ядер является ядро железа. Множество более мелких ядер типа водорода или гелия отдали бы свою энергию, если бы могли объединиться в ядро железа. На другом конце периодической таблицы более крупные ядра типа урана тоже отдали бы свою энергию, если бы их можно было разделить на части, а из этих частей составить ядро железа. Железо представляет собой самое низкоэнергетическое состояние, доступное ядрам. Ядра стремятся к пребыванию в форме железа, но энергетические барьеры препятствуют тому, чтобы это преобразование могло легко произойти при большинстве условий. Чтобы преодолеть эти энергетические барьеры, как правило, нужны либо высокие температуры, либо продолжительные промежутки времени.
Рассмотрим большой кусок твердого вещества типа камня или, быть может, планеты. Структура этого твердого тела не изменяется благодаря обычным электромагнитным силам, вроде тех, что участвуют в химической связи. Вместо сохранения своего исходного ядерного состава вещество, в принципе, могло бы перегруппироваться так, чтобы все его атомные ядра превратились в железо. Чтобы произошла подобная реструктуризация вещества, ядра должны преодолеть электрические силы, удерживающие это вещество в том виде, в каком оно существует, и электрические силы отталкивания, с которыми ядра действуют друг на друга. Эти электрические силы создают сильный энергетический барьер, во многом напоминающий барьер, изображенный на рис. 23. Из-за этого барьера ядра должны перегруппировываться посредством квантово-механического туннелирования (как только ядра проникают через барьер, сильное притяжение инициирует синтез). Таким образом, наш кусок вещества выказал бы ядерную активность. При наличии достаточного времени весь камень или вся планета превратились бы в чистое железо.
Сколько времени заняла бы подобная реструктуризация ядер? Ядерная активность такого типа преобразовала бы ядра камня в железо примерно за пятнадцать сотен космологических декад. Если бы произошел этот ядерный процесс, в космос была бы испущена избыточная энергия, потому что ядра железа соответствуют более низкому энергетическому состоянию. Однако этот процесс холодного ядерного синтеза никогда не будет доведен до конца. Он даже никогда по-настоящему не начнется. Все протоны, составляющие ядра, распадутся на меньшие частицы много раньше, чем ядра преобразуются в железо. Даже самое длинное возможное время жизни протона составляет менее двухсот космологических декад — много короче огромного промежутка времени, необходимого для холодного синтеза. Другими словами, ядра распадутся прежде, чем у них появится шанс превратиться в железо.
Другой физический процесс, требующий слишком долгого времени, чтобы считаться важным для космологии, — это туннелирование вырожденных звезд в черные дыры. Поскольку черные дыры — это самые низкоэнергетические состояния, доступные звездам, вырожденный объект типа белого карлика имеет большую энергию, чем черная дыра той же массы. Таким образом, если бы белый карлик мог самопроизвольно преобразоваться в черную дыру, он высвободил бы лишнюю энергию. Однако обычно подобного преобразования не происходит из-за энергетического барьера, создаваемого давлением вырожденного газа, который поддерживает существование белого карлика.
Несмотря на энергетический барьер, белый карлик мог бы преобразоваться в черную дыру посредством квантово-механического туннелирования. Из-за принципа неопределенности все частицы (10 57или около того), составляющие белый карлик, могли бы оказаться в пределах столь малого пространства, что образовали бы черную дыру. Однако это случайное событие требует чрезвычайно длительного времени — порядка 10 76космологических декад. Преувеличить воистину огромный размер 10 76космологических декад — невозможно. Если этот необъятно большой промежуток времени записать в годах, получится единица с 10 76нулями. Мы могли бы даже не начинать записывать это число в книге: оно имело бы порядка одного нуля на каждый протон в видимой современной Вселенной, плюс-минус пару порядков величины. Нет нужды говорить, что протоны распадутся и белые карлики исчезнут задолго до того, как Вселенная достигнет 10 76– й космологической декады.
Что же на самом деле происходит в процессе долгосрочного расширения?
Хотя многие события фактически невозможны, остается обширный диапазон теоретических возможностей. Самые обширные категории будущего поведения космоса основаны на том, является ли Вселенная открытой, плоской или замкнутой. Открытая или плоская Вселенная будет расширяться вечно, тогда как замкнутая Вселенная переживет повторное сжатие по истечении некоторого определенного времени, которое зависит от исходного состояния Вселенной. Однако рассматривая более спекулятивные возможности, мы обнаруживаем, что будущая эволюция Вселенной может оказаться гораздо сложнее, чем предполагает эта простая классификационная схема.
Основная проблема состоит в том, что мы можем производить имеющие физический смысл измерения и, следовательно, делать определенные заключения только в отношении местной области Вселенной — части, ограниченной современным космологическим горизонтом. Мы можем измерить общую плотность Вселенной внутри этой местной области, диаметр которой составляет около двадцати миллиардов световых лет. Но измерения плотности в пределах этого местного объема, увы, не определяют долгосрочную судьбу Вселенной в целом, т. к. наша Вселенная может быть намного больше.
Предположим, к примеру, что нам удалось бы измерить, что космологическая плотность превышает значение, необходимое для замыкания Вселенной. Мы пришли бы к экспериментальному заключению, что в будущем наша Вселенная должна пережить повторное сжатие. Вселенную явно отправили бы через ускоряющуюся последовательность природных катаклизмов, ведущих к Большому сжатию, описанному в следующем разделе. Но это далеко не все. Наша местная область Вселенной — та часть, которая, по нашим наблюдениям, является замкнутой в данном сценарии мнимого армагеддона, — могла бы оказаться вложенной в гораздо большую область с гораздо меньшей плотностью. В этом случае сжатие пережила бы только некоторая часть всей Вселенной. Оставшаяся же часть, охватывающая, быть может, большую часть Вселенной, могла продолжить бесконечно расширяться.