Росинская Елена Рафаиловна
Шрифт:
3) рентгеновская микроскопия позволяет за счет широкого диапазона энергий (от десятков эВ до десятков кэВ) изучать структуру самых различных объектов, от живых клеток до тяжелых металлов. Рентгеновские микроскопы по конструкциям делятся на проекционные, контактные, отражательные и дифракционные. К сожалению, для исследования вещественных доказательств метод пока применяется мало.
Методы анализа состава делятся на методы элементного анализа, методы молекулярного анализа и методы анализа фазового состава.
1. Методы элементного анализа используются для установления элементного состава, т.е. качественного или количественного содержания определенных химических элементов в данном объекте экспертного исследования. Круг их достаточно широк, однако наиболее распространены в экспертной практике перечисленные ниже:
1) эмиссионный спектральный анализ, заключающийся в том, что с помощью источника ионизации вещество пробы переводится в парообразное состояние и возбуждается спектр излучения этих паров. Проходя далее через входную щель специального прибора - спектрографа, излучение с помощью призмы или дифракционной решетки разлагается на отдельные спектральные линии, которые затем регистрируются на фотопластинке или с помощью детектора. Качественный эмиссионный спектральный анализ основан на установлении наличия или отсутствия в полученном спектре аналитических линий искомых элементов, количественный - на измерении интенсивностей спектральных линий, которые пропорциональны концентрациям элементов в пробе. Используется для исследования широкого круга вещественных доказательств - взрывчатых веществ, металлов и сплавов, нефтепродуктов и горюче-смазочных материалов, лаков и красок и др.;
2) лазерный микроспектральный анализ, основан на поглощении
сфокусированного лазерного излучения, благодаря высокой
интенсивности которого начинается испарение вещества мишени и
образуется облако паров - факел, служащий объектом
исследования. За счет повышения температуры и других процессов
происходит возбуждение и ионизация атомов факела с образованием
плазмы, которая является источником анализируемого света.
Фокусируя лазерное излучение, можно производить спектральный
анализ микроколичеств вещества, локализованных в малых объемах
-10
(до 10 куб. см), и устанавливать качественный и количественный
элементный состав самых разнообразных объектов практически без их
разрушения;
3) рентгеноспектральный анализ. Прохождение рентгеновского излучения через вещество сопровождается поглощением излучения, что приводит атомы вещества в возбужденное состояние. Возврат к исходному состоянию сопровождается излучением спектра характеристического рентгеновского излучения. По наличию спектральных линий различных элементов можно определить качественный, а по их интенсивности - количественный элементный состав вещества. Это один из наиболее удобных методов элементного анализа вещественных доказательств, который на качественном и часто полуколичественном уровне является практически неразрушающим, только в редких случаях при исследовании ряда объектов, как правило, органической природы могут произойти видоизменения отдельных свойств этих объектов. Используется для исследования широкого круга объектов: металлов и сплавов, частиц почвы, лакокрасочных покрытий, материалов документов, следов выстрела и проч.
2. Под молекулярным составом объекта понимают качественное (количественное) содержание в нем простых и сложных химических веществ, для установления которого используются методы молекулярного анализа:
1) химико-аналитические методы, которые традиционно применяются в криминалистике уже десятки лет, например капельный анализ, основанный на проведении таких химических реакций, существенной особенностью которых является манипулирование с капельными количествами растворов анализируемого вещества и реагента. Используют для проведения в основном предварительных исследований ядовитых, наркотических и сильнодействующих, взрывчатых и т.п. веществ. Для осуществления этого метода созданы наборы для работы с определенными видами следов: "Капля", "Капилляр" и др.;
2) микрокристаллоскопия - метод качественного химического анализа по образующимся при действии соответствующих реактивов на исследуемый раствор характерным кристаллическим осадкам. Используется при исследовании следов травления в документах, фармацевтических препаратов, ядовитых и сильнодействующих веществ и проч. Однако основными методами исследования молекулярного состава вещественных доказательств являются в настоящее время молекулярная спектроскопия и хроматография;
3) молекулярная спектроскопия (спектрофотометрия) - метод, позволяющий изучать качественный и количественный молекулярный состав веществ, основанный на изучении спектров поглощения, испускания и отражения электромагнитных волн, а также спектров люминесценции в диапазоне длин волн от ультрафиолетового (УФ) до инфракрасного (ИК) излучения, включает:
а) инфракрасную спектроскопию - метод основан на поглощении молекулами вещества ИК-излучения, что переводит их в возбужденное состояние, и регистрации спектров поглощения с помощью спектрофотометров. Используется для установления состава нефтепродуктов, лакокрасочных покрытий (связующего), парфюмерно-косметических товаров и проч.;
б) спектроскопию в видимой и ультрафиолетовой областях спектра, которая основана на поглощении электромагнитного излучения соединениями, содержащими хромофорные (определяющими окраску вещества) и ауксохромными (не определяющими поглощения, но усиливающими его интенсивность) группы. По спектрам поглощения судят о качественном составе и структуре молекул. Количественный анализ основан на переводе вещества, если оно бесцветно, в поглощающее световой поток окрашенное соединение с помощью определенных реактивов и измерении оптической плотности с помощью специального прибора - фотометра. Оптическая плотность при одинаковой толщине слоя тем больше, чем выше концентрация вещества в растворе. По электронным спектрам устанавливают, например, состав примесей и изменения, происходящие в объекте под воздействием окружающей среды;
4) хроматография используется для анализа сложных смесей веществ, метод основан на различном распределении компонентов между двумя фазами - неподвижной и подвижной. В зависимости от агрегатного состояния элюента различают газовую или жидкостную хроматографию. В газовой хроматографии в качестве подвижной фазы используется газ. Если неподвижной фазой является твердое тело (адсорбент), хроматография называется газоадсорбционной, а если жидкость, нанесенная на неподвижный носитель, - газожидкостной.