Тарантул Вячеслав Залманович
Шрифт:
Безусловно, значительные успехи в изучении рака связаны в основном с исследованиями самих раковых больных. Но для достижения конечной цели необходим огромный клинический материал, тысячи больных с правильно поставленным диагнозом. Чтобы решить столь сложную задачу, в Америке в 1999 году был создан крупный проект по анатомии ракового генома — Cancer Genome Anatomy Project (CGAP). Цель проекта «Геном рака», пришедшего на смену проекту «Геном человека», заключается в использовании данных, полученных в результате расшифровки наследственной информации человека, для поиска причин опухолей. GCAP призван создать платформу, обеспечивающую «интерфейс» раковых исследований и геномики. Для этого участники проекта занимаются составлением каталога генов, экспрессирующихся при развитии рака, поиском полиморфизма этих генов, молекулярным анализом различных нарушений хромосом, ассоциированных со злокачественным перерождением. И вся эта огромная по объему информация доступна любому пользователю на соответствующем сайте Интернета .
Хотя старые подходы к поиску раковых генов позволили найти немало участков ДНК, связанных с развитием таких злокачественных заболеваний, как лимфомы, лейкозы и саркомы, однако они не смогли помочь при поиске генов, которые «виноваты» в развитии других, даже очень распространенных раковых заболеваний. Для облегчения их поиска участники проекта решили изучать по очереди все экзоны (т. е. кодирующие участки) всех генов, обнаруженных после полного секвенирования генома человека, и сравнивать их строение в здоровых и раковых клетках. В планы ученых на первом этапе включено около 50 различных типов опухолей, которые и предстоит исследовать в ближайшие 2–3 года. Учитывая, что в каждом гене в среднем насчитывается до десяти экзонов, а каждый ген необходимо изучить в здоровой и больной ткани для 48 типов рака, предстоит выполнить до 32 миллионов исследований. Это гигантская работа, но она уже начинает приносить свои плоды. Таким путем были, например, недавно обнаружены гены, ответственные за развитие широко распространенного рака простаты. В результате обследования тысяч больных с этой патологией было установлено, что у людей с измененным геном (онкогеном) GSTP1 риск развития рака предстательной железы в молодом возрасте возрастает вдвое. Скорость роста опухоли и вероятность ее рецидива зависят также от одного из вариантов другого гена, называемого hAR
Невозможно описать здесь все эксперименты и успехи, достигнутые в последние годы онкогеномикой. Важно другое. Проблема, хотя и медленно, но постепенно решается. Выявление и систематизация генных мутаций, связанных с разными формами рака, — огромная и весьма трудная задача. Дело в первую очередь в том, что имеется большое разнообразия типов рака. Но и это еще не все. В одном типе опухоли у разных пациентов могут мутировать совершенно разные гены. Более того, даже у одного пациента при развитии опухоли могут происходить какие-то дополнительные мутации, которые и являются определяющими в конечном счете. Ученые полагают, что использование информации, получаемой с помощью крупномасштабных технологий структурной и функциональной геномики, должно привести к экспоненциальному росту числа генов, которые имеют отношение (прямое или косвенное) к раковому перерождению, и разработке новых средств экспресс-диагностики этих заболеваний. В последнем случае большие надежды связывают с такими уже упоминавшимися выше технологиями, как микрочипы и полимеразная цепная реакция (ПЦР). Но сложность заключается в том, что рак — явление чаще всего спорадическое. Семейные случаи заболевания раком составляют лишь около одного процента от всех пациентов онкологических клиник. А постоянно бегать и анализировать свой геном на возможные мутации в сотне разных генов — малореальная перспектива.
Тем не менее, поиск причин возникновения той или иной разновидности рака молекулярные генетики осуществляют вовсе не в погоне за некой интересной для них теоретической информацией. Знание особенностей работы генов опухолевого роста позволяет искать пути восстановления или подавления функции этих генов в опухолевой ткани, а значит, и создать эффективные методы лечения злокачественных заболеваний. Обнадеживающие результаты в этой области уже получены. О некоторых из них мы поговорим далее в разделе «Ремонт генов (генная терапия)». Другой важный результат проведенных исследований уже получил реальное воплощение в медицинскую практику. При хирургическом подходе к лечению рака (а он пока, к сожалению, один из главных) твердую гарантию положительного результата обеспечивает лишь полное удаление всех злокачественных клеток. Но зачастую хирургу во время операции не так-то легко определить, затронут ли опухолью данный участок органа или нет. Вероятность визуальной ошибки велика, а цена ее — жизнь человека. В то же время многие органы нельзя удалять целиком, если мы не хотим нарушить нормальное функционирование организма. И тут на выручку приходит обнаруженная ранее мутация, испортившая ген. Она служит для медиков прекрасным маркером присутствия или отсутствия опухолевых клеток в организме пациента после операции. На западе уже существует множество клиник, где проводятся операции «под молекулярным контролем». Видимая невооруженным глазом опухолевая ткань удаляется хирургом полностью, и сразу после операции вокруг неё через каждые несколько миллиметров берутся микроскопические пробы, которые анализируются с помощью молекулярно-генетических экспресс-методов. Если какие-то опухолевые отростки сохранились после хирургического вмешательства, их удаляют уже через два-три часа после проведенного анализа. Статистика показывает, что средняя продолжительность жизни пациентов после «контролируемой» операции значительно выше, чем у оперированных традиционным образом. Некоторые другие подходы, используемые сегодня для лечения рака, будут описаны далее в разделе «Ремонт генов».
Роль генов в злокачественном перерождении неоспорима. Вместе с тем, как пишет академик Е. Д. Свердлов, мы сегодня неизбежно приходим к осознанию того, что эта проблема — не только проблема генов. Ни одни мутации отдельных «плохих» генов, ни даже те или иные звенья регуляции экспрессии генома, а определенные интегральные процессы в клетках и тканях вовлечены в развитие рака. И это все еще предстоит «распутать» ученым, прежде, чем мы можем сказать: рак побежден!
На сегодняшний день неким утешением, хотя и довольно слабым, для нас может служить то обстоятельство, что рак не является какой-то фатальной неизбежностью, поскольку многие люди, достигшие весьма преклонного возраста, им не заболевают. Но трудно объяснить заболеваемость раком и одними лишь вероятностными причинами. В подавляющем большинстве случаев, для возникновения опухоли одной генетической предрасположенности недостаточно. Всегда необходим какой-то толчок, который заставит онкогены проявить себя. Считается, что 90% всех форм рака у человека спровоцированы действием факторов окружающей среды, таких, например, как вирусы, радиация и различные канцерогены (от cancer — рак, genos — рождение), которых существует огромное множество в окружающей нас природе. Чаще всего именно последние и помогают «нехорошим» генам активизироваться или, наоборот, замолкать.
Считается, что с питанием и курением связано свыше 60% раковых заболеваний, а вот с употреблением алкоголя всего 5%.
Нам же пока остается только надеяться, что онкогеномика сможет решить многие из этих вопросов в ближайшее время, до того как мы с вами лично не столкнемся с этой проблемой.
ГЕНЫ И ПОВЕДЕНИЕ (психогеномика)
Не всяк умен, кто с головою.
Русская пословица
Как уже многократно говорилось выше, геном всех людей, живущих на нашей планете, почти одинаков, но вот поведение разных людей, их умственные способности, психика порой кардинально отличаются. Сталин, Гитлер, академик Сахаров, физик Ландау, театральный деятель Станиславский, певец Лемешев, космонавт Гагарин, адмирал Ушаков, ударник труда Стаханов — это все представители одного вида гомо сапиенс, но какие они разные по своей психике, таланту и поведению! В чем же причина?
До недавнего времени ведущую роль в решении подобного рода вопросов играли психиаторы и психологи, а также ученые, которые занимались поведенческой генетикой — наукой, изучающей наследование характера, темперамента и особенностей поведения человека. Использование ими многочисленных тестов говорило о том, что интеллект все-таки зависит от внешних воздействий, в первую очередь от характера социальной среды, в которой оказался ребенок. Коэффициент интеллекта (хорошо известный как IQ) у детей, которых много и хорошо обучают, можно повысить буквально за год. Эти данные позволили некоторым ученым утверждать и настраивать на это общественность, что интеллект человека определяется только социальной средой и обучением и практически никак не зависит от наследственности.
Параллельно с этим проводились исследования на идентичных, или, как принято их называть, однояйцовых, близнецах, которые наследуют совершенно одинаковые гены (в следующем разделе мы поговорим об этом подробнее).
В результате анализа близнецов, проведенного канадскими психологами, изучающими генетику лидерства и стремления к лидерству, было доказано наследственное происхождение этих качеств. Как характерную иллюстрацию к данному положению психологи приводят судьбу династии Кеннеди, члены которой из поколения в поколение передают своим потомкам этот самый «ген лидерства». Было установлено, что и за такие черты человека, как тревожность и склонность к депресиии, также в определенной мере отвечает наследственность. Однако сам механизм наследования, гены, ответственные за темперамент, наклонности и пристрастия, остаются пока неизвестными. В отличие от генов, определяющих группу крови, формирование конечностей или цвет глаз, выделить «ген лидерства» или, скажем, «ген гомосексуализма» оказалось значительно сложнее.