Вход/Регистрация
Нейтрино - призрачная частица атома
вернуться

Азимов Айзек

Шрифт:

Эти законы справедливы для некоторых рассмотренных ранее взаимодействий с участием электронов и мюонов если при этом учесть различие двух типов нейтрино. Распад нейтрона происходит при участии электронного антинейтрино:

n->p ++ e – + ' e.

Нетрудно видеть, что электронное и мюонное числа равны нулю в начале и в конце распада.

Отрицательный пион распадается на отрицательный мюон и антинейтрино мюонного типа или на электрон и антинейтрино электронного типа:

' – – > – + ' ,

' – – > e – + ' e.

Мюонное и электронное числа пиона равны нулю. В первом распаде пиона отрицательный мюон и антинейтрино мюонного типа имеют мюонные числа +1 и -1, т. е. их сумма равна нулю. Во втором — электрон и антинейтрино электронного типа имеют электронные числа +1 и -1 соответственно, т. е. их сумма также равна нулю. Те же самые соображения применимы и к распаду положительного пиона.

Физики установили, что в действительности при всех взаимодействиях частиц с участием мюонов или электронов или и тех и других вместе мюонное и электронные числа сохраняются. Конечно, их сумма (лептонное число) также сохраняется. Поскольку более важно сохранение этих чисел в отдельности, а не сохранение их суммы, законом сохранения лептонного числа перестали пользоваться, хотя он никогда не нарушался, и вместо него физики говорят о законах сохранения электронного и мюонного чисел.

Двухнейтринный эксперимент

Законы сохранения электронного и мюонного чисел имеют силу только в том случае, если электронное нейтрино и мюонное нейтрино на самом деле различны по своей природе. К сожалению, нет такого свойства, по которому можно было бы установить это различие. Оба типа нейтрино не имеют ни массы, ни заряда. Спины обоих равны +1/2 или -1/2, и оба имеют античастицы. В чем же тогда заключается их различие?

Физики не решались постулировать различие между электронным и мюонным нейтрино без дополнительного доказательства. Они искали взаимодействие, которое протекало бы по-разному в зависимости от того, одинаковы или различны эти нейтрино. Такой эксперимент был придуман и проведен в 1962 году в лаборатории Брукхейвена. Для проведения эксперимента требовался пучок нейтрино высоких энергий. Его получали при столкновении протонов большой энергии с бериллиевой мишенью, использовавшейся для получения интенсивного пучка положительно и отрицательно заряженных пионов (рис. 9).

Пучок пионов направляли на стену из стальной брони (от старого линкора) толщиной около 13,5 м.Не достигнув стены, приблизительно 10 % весьма нестабильных положительных пионов распадалось на положительные мюоны и мюонные нейтрино, такое же количество отрицательных пионов распадалось на отрицательные мюоны и мюонные антинейтрино. Кроме того, положительные пионы создавали позитроны и электронные нейтрино, а отрицательные пионы — электроны и электронные антинейтрино, но в таком незначительном количестве, что ими можно было свободно пренебречь.

Рис. 9. Рождение нейтрино в двухнейтринном эксперименте.

Когда этот конгломерат частиц сталкивался со стальной стенкой, пионы и мюоны обоих знаков останавливались, а нейтрино мюонного и электронного типов продолжали двигаться в прежнем направлении, проходя 13,5 мстальной брони, как через вакуум. По другую сторону от стальной стены было огорожено место, в котором располагался 10-тонный детектор (искровая камера), очень чувствительный к определенным ядерным процессам. Через искровую камеру проходил непрерывный поток нейтрино и мюонное антинейтрино. Очень редко мюонное нейтрино должно было реагировать с нейтроном, образуя протон и отрицательный мюон (по крайней мере, этого следовало ожидать согласно теории):

+ n->p ++ – .

Барионное число при такой реакции сохраняется, так как нейтрон превращается в протон и оба имеют барионное число +1. Кроме того, сохраняется и мюонное число, так как мюонное нейтрино превращается в отрицательный мюон и оба имеют мюонное число +1. Это как раз то, что следовало бы ожидать, если справедлив закон сохранения мюонного числа. Ну, а что было бы в противном случае? Что если мюонное нейтрино совпадает с электронным нейтрино и сохраняется только лептонное число, а не электронное и мюонные числа в отдельности? Тогда мы должны были бы говорить просто о нейтрино, которое при взаимодействии с нейтроном может образовать протон и отрицательный мюон или протон и электрон:

+ n->p ++ – ,

+ n->p ++ e – .

Если бы существовал только один тип нейтрино, то, согласно теории, вероятность образования отрицательных мюонов и электронов должна была быть одинакова и оба типа частиц должны были возникать в одинаковых количествах. В этом случае следовало пользоваться только сохранением лептонного числа.

Если же существуют два типа нейтрино, то, поскольку в искровую камеру попадают только мюонные нейтрино, должны возникать только отрицательные мюоны, а образование электронов не имело бы место. Тогда были бы справедливы законы сохранения электронного и мюонного чисел.

  • Читать дальше
  • 1
  • ...
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: