Шрифт:
Но это было странное шествие. Теория раскалывала все более и более твердые орешки, подбрасываемые ей экспериментаторами, но не могла ответить на некоторые подкупающе простые вопросы. Например, если было точно известно положение электрона, оказывалось невозможным определить его скорость и наоборот. Это казалось платой за приписывание частицам волновых свойств. Причина оставалась неясной. Это была кавалерийская атака без обеспечения тылов. Она не могла продолжаться долго.
В это время Копенгаген стал одним из наиболее активных центров развития теоретической физики, где вокруг Бора в непринужденной обстановке группировалась творческая молодежь из многих стран. Напряженная работа, начинавшаяся в аудиториях, библиотеке и небольших кабинетах, продолжалась за обеденным столом, во время вечерних прогулок, за столиками кафе. Здесь все были равны. Только что принятый аспирант ожесточенно спорил с самим Бором, и «сам» не считал зазорным признать, если оказывалось, что ошибается именно он.
Шредингер, который в течение некоторого времени пытался отказаться от квантовых скачков и полностью заменить в атоме электроны-частицы трехмерными волнами материи, осенью 1926 года приехал в Копенгаген, чтобы в горниле дискуссии апробировать свои работы. В результате было установлено, что так не только нельзя построить непротиворечивую теорию атома, но даже не удается объяснить планковский закон излучения черного тела.
Шредингер уехал, проклиная затею с квантовыми скачками. «Если мы собираемся сохранить эти проклятые квантовые скачки, — сокрушался он, — то я жалею, что вообще имел дело с квантовой теорией!»
Копенгагенская дискуссия продолжала бушевать много месяцев подряд. Споры тянулись до глубокой ночи. Надежда на просвет сменялась разочарованием. Это был один из замечательных «котлов» коллективного научного творчества. Гейзенберг вспоминает: «И когда я после таких обсуждений предпринимал прогулку в соседний парк, передо мной снова и снова возникал вопрос, действительно ли природа может быть такой абсурдной, какой она предстает перед нами в этих атомных экспериментах».
Вновь и вновь обсуждалась работа Бора, Крамерса и Слетера, которые еще в 1924 году пытались устранить противоречие между волновой и корпускулярной картинами. Они считали электромагнитные волны не реальными полями, а волнами вероятности, показывающими, где скорее всего должен появиться квант света — фотон. Но эта упрощенная точка зрения оказалась неверной. Она приводила, в частности, к возможности нарушения закона сохранения энергии в элементарных актах, а это было недопустимым прегрешением против святая святых природы.
Закон сохранения энергии не мог быть нарушен. Взаимосвязь между волновой и корпускулярной картинами должна была быть более сложной. Однако идея вероятностной интерпретации вновь и вновь порывалась на поверхность копенгагенского «котла».
Использовав идеи Шредингера, Макс Борн предположил, что волна вероятности — это не трехмерная волна, аналогичная радиоволнам, свету или упругим волнам, а шредингеровская волна в многомерном пространстве. Это уже не волна материи, не материальный заменитель электрона, фотона или другой частицы, а абстрактный математический образ, тесно связанный с этими частицами. Борн предположил, что квадрат от амплитуды (высоты) этой незримой нематериальной волны определяет вероятность появления частицы в данном месте и в данный момент. Представить эту волну как нечто материальное невозможно и не нужно, но она удивительным образом позволяла согласовать теорию с экспериментом.
Эта трактовка не приводила к нарушению закона сохранения энергии. Но оставалось много неясностей: как определять, например, такую основную и, казалось, простую величину, как скорость частицы?
Выход из положения снова указал Гейзенберг. Стремясь к формальной стройности теории и много размышляя над философией проблемы, он сформулировал знаменитое соотношение неопределенностей. Оно было предельно просто: произведение ошибок в определении положения частицы и ее скорости не может быть меньше определенной величины, тесно связанной со знаменитым квантом, введенным еще Планком.
Гейзенберг не давал математического анализа истоков этого соотношения. Он вывел его из простого мысленного эксперимента и показал, что на опыте оно всегда справедливо. Он продемонстрировал новые возможности, открывающиеся, если признать это соотношение, в качестве основного закона микромира.
Новое соотношение, возведенное в ранг принципа неопределенности, позволило придать квантовой механике формальное совершенство и внутреннюю непротиворечивость. Но эти преимущества оказались оплаченными дорогой ценой. Квантовой механике пришлось отказаться от детального, наглядного описания процессов.
Исчезла наглядность, столетиями помогавшая ученым в их путешествиях по дебрям неведомого. Нельзя было даже мысленно проследить за траекторией движения электрона — ведь для этого нужно было одновременно знать его положение и скорость, а теория объявила это невозможным. Теории пришлось даже отказаться от возможности подробного анализа причин явлений микромира. Новая теория разорвала цепь бытия.
«Пала связь времен. Зачем же я связать ее рожден?» — вероятно, задавали себе не раз гамлетовский вопрос физики, приговорившие себя к добровольной каторге на галерах микромира. От привычной канвы событий остались отдельные звенья, связанные лишь нематериальными математическими формулами. Можно было вычислить лишь вероятность того, что за данной причиной наступит определенное следствие.