Шрифт:
М2 = 22 — 1 = 3 = простое,
М3 = 23 — 1 = 7 = простое,
М5 = 25 — 1 = 31 = простое,
М7 = 27 — 1 = 127 = простое,
М11 = 211 — 1 = 2047 = 23 89.
Общий способ нахождения больших простых чисел Мерсенна состоит в проверке всех чисел Мp для различных простых чисел р.
Эти числа очень быстро увеличиваются и столь же быстро увеличиваются затраты труда на их нахождение. То, что с этой работой все-таки можно справиться уже для довольно больших чисел, объясняется существованием эффективных способов выяснения простоты для чисел такого вида.
В исследовании чисел Мерсенна можно выделить раннюю стадию, достигшую своей кульминации в 1750 году, когда Леонард Эйлер [5] установил, что число М31 является простым. К этому времени было найдено восемь простых чисел Мерсенна, соответствующих значениям
5
Леонард Эйлер (1707–1783) — выдающийся математик, родившийся в Швейцарии, большую часть жизни провел в России, являясь членом Петербургской Академии наук. (Прим. перев.)
р = 2, р = 3, р = 5, р = 7, р = 13, р = 17, p = 19, р = 31.
Эйлерово число M31 оставалось самым большим из известных простых чисел более ста лет. В 1876 году французский математик Лукас установил, что огромное число
М127 = 170141183460469231731687303715884105727
является простым числом. Ну и число! С 39 цифрами. Простые числа Мерсенна, меньшие этого числа, задаются значениями р, указанными выше, а также значениями
р = 61, р = 89, р = 107.
Эти 12 простых чисел Мерсенна были вычислены с помощью только карандаша и бумаги, а для вычисления следующих уже использовались механические настольные счетные машины. Появление вычислительных машин с электрическим приводом позволило продолжить поиски, доведя их до р = 257. Однако результаты были неутешительными, среди них не оказалось новых простых чисел Мерсенна.
Затем задача была переложена на плечи ЭВМ. Создание все более высокопроизводительных ЭВМ дало возможность продолжить поиск новых простых чисел Мерсенна. Д. X. Лемер установил, что значения
р = 521, р = 607, р = 1279, р = 2203, р = 2281
дают простые числа Мерсенна. Дальнейшие поиски также увенчались успехом. Ризель (1958) показал, что
р = 3217,
дает простое число Мерсенна, а Гурвиц (1962) нашёл еще два таких значения:
р = 4253, р = 4423.
Огромного успеха добился Гиллельс (1964), который нашел простые числа Мерсенна, соответствующие значениям
р = 9689, р = 9941, р = 11213.
Итак, общий урожай составил 23 простых числа Мерсенна, и, так как мощности ЭВМ продолжают увеличиваться, мы надеемся на дальнейший успех. Простое число Лукаса М127, как мы уже упоминали, имеет 39 цифр. Даже вычисление самого большого из известных простых чисел, числа M11213, является довольно сложной задачей и, по-видимому, нет смысла воспроизводить здесь это число. Если же мы захотим узнать, сколько цифр содержит это число, то мы можем сделать это, не вычисляя самого числа.
Вместо нахождения количества цифр числа Мр = 2p — 1 рассмотрим эту задачу для числа Мр + 1 = 2р.
Эти два числа имеют одинаковое количество цифр, так как если бы число Мр + 1 имело на одну цифру больше, то оно должно было бы оканчиваться на 0. Но это невозможно ни для какой степени числа 2, что видно из ряда
2, 4, 8, 16, 32, 64, 128, 266….
в котором последняя цифра в каждом числе может быть только одним из чисел
2, 4, 8, 6.
Чтобы найти количество цифр числа 2p, вспомним, что Ig 2p = p lg 2. Из таблиц находим, что Ig 2 приближенно равняется 0,30103, откуда
lg 2p = p lg 2 = р • 0,30103.
Для р = 11213 получаем
lg 211213 = 3375,449…,