Вход/Регистрация
Создаем робота-андроида своими руками
вернуться

Ловин Джон

Шрифт:

Платина является дорогим металлом. Электроды топливного элемента обычно покрыты или анодированы платиной. Платиновое покрытие является катализатором, облегчающим протекание химических реакций внутри топливного элемента.

Развитие технологий производства топливных элементов наблюдается и в автомобильной индустрии. Все ведущие автостроительные компании заняты продолжающимися исследованиями по разработке и внедрению технологии топливных элементов. Список компаний, занимающихся подобными исследованиями, напоминает рейтинги «кто есть кто» в научных исследованиях.

Появление на рынке автомобилей, работающих на топливных элементах, ожидается к 2003 году. Канадская компания Ballard Power Systems, основной игрок на рынке производства ПОМ технологий, запускает в производство серию автобусов, работающих на топливных элементах. В производстве топливных элементов Ballard объединил свои усилия с такими известными компаниями как DaimlerChrysler и Ford Motor. Ballard недавно ввел в строй предприятие, рассчитанное на выпуск 160.000 коммерческих топливных элементов ежегодно.

Honda планирует перейти к выпуску автомобилей, работающих на топливных элементах уже 2007 году. Она будет использовать существующие модели автомобилей с электрическими двигателями, разработанными для питания от аккумуляторов, и будет заменять их топливными элементами.

Продолжение исследований в области технологий топливных элементов встречается с энтузиазмом и находит широкую поддержку. Перед тем как покинуть президентское кресло, президент Клинтон вместе с конгрессом ассигновал $ 100.000.000 для продолжения исследований в области создания технологий топливных элементов на 2001 фискальный год.

Когда топливные элементы станут неотъемлемой частью нашего обихода, как видеокамеры, сотовые телефоны и портативные компьютеры, мы сможем использовать их для питания наших роботов.

Глава 4

Системы движения и привода

В этой главе будут рассмотрены некоторые компоненты систем движения и привода, которые могут быть использованы в конструкциях роботов. Некоторые схемы подобных компонентов будут рассмотрены в этой главе, другие варианты конструкций схем движения и привода будут обсуждаться в следующих главах. Мы остановимся на следующих конструкциях: воздушные мышцы, нитиноловая проволока, шаговые двигатели, двигатели постоянного тока с редукторами, сервомоторы и соленоиды.

Воздушные мышцы

Воздушная мышца представляет собой простое устройство, предложенное в 1950-х годах Дж. Л. МакКиббеном. Подобно биологическому прототипу воздушная мышца сокращается при активировании. Интересен тот факт, что воздушная мышца представляет собой достаточно точную копию биологической мышцы-прототипа, что позволяет исследователям, прикрепляя подобные мышцы к точкам скелета, соответствующим положению «живой» мускулатуры, моделировать биомеханические и иннервационные процессы низкого уровня, характерные для биологической мышцы. В опубликованной литературе подобные конструкции также называются воздушными мышцами МакКиббена, искусственными пневматическими мышцами МакКиббена и «Резиномышцами». Я буду использовать название «воздушная мышца».

Применение

Воздушные мышцы находят применение в робототехнике, биомеханике, создании искусственных протезов конечностей и промышленности. Основной причиной, по которой экспериментаторы и любители охотно используют воздушные мышцы, является простота их конструкции и легкость использования в сравнении с обычными пневматическими цилиндрами. Воздушные мышцы имеют малый вес, «гибкую» конструкцию и высокое отношение развиваемой ими силы по отношению к собственному весу (400:1); они выдерживают продольное скручивание, не требуют параллельности закрепления концов и могут быть изогнуты внешним ограничителем без нарушения работы.

Принцип работы воздушной мышцы

Воздушная мышца состоит из двух основных частей: внутренней растягивающейся мягкой резиновой трубки и внешней сетчатой ячеистой оплетки (рукава), изготовленного из капрона (см. рис. 4.1). Резиновая трубка называется «внутренним пузырем» и заключена внутрь рукава оплетки.

Рис. 4.1. Устройство и работа воздушной мышцы

Прочие компоненты включают воздушный патрубок на одном конце резиновой трубки и две петли на каждом из концов воздушной мышцы, позволяющие прикрепить мышцу к остальной части конструкции.

При подаче давления во внутренний пузырь он расширяется и давит изнутри на стенки рукава оплетки, что вызывает увеличение его диаметра. Физические характеристики рукава таковы, что его продольное сокращение пропорционально увеличению его диаметра, что обусловливает появление силы сокращения в воздушной мышце.

Необходимо отметить, что для правильной работы мышцы в состоянии «покоя» она должна быть растянута или нагружена. В противном случае эффект сжатия не будет выражен. Как правило, подобные конструкции воздушной мышцы способны сжиматься до 25 % от их первоначальной длины.

  • Читать дальше
  • 1
  • ...
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: