Шрифт:
Возможен последовательный вывод численного значения переменной pot на ЖК дисплей, соединенный с микроконтроллером через последовательный порт, или в ПК через последовательный порт RS232. Для организации последовательного порта необходима команда:
Serout Pin, Mode, Var
Сейчас мы не будем рассматривать соединение через последовательный порт; важно то, что вы получили об этом представление.
Сервомоторы
Сервомоторы представляют собой двигатели постоянного тока с редуктором, снабженные системой обратной связи, которая позволяет позиционировать положение ротора сервомотора с высокой точностью. Вал большинства сервомоторов для любительского конструирования может быть позиционирован в интервале поворота не менее 90° (±45°). Сервомотор имеет три вывода. Два вывода подключаются к источнику питания, как правило, от 4,5 до 6 В и к земляному проводу. По третьему проводу подается сигнал обратной связи, позиционирующий ротор мотора. Сигнал позиционирования представляет собой цепочку импульсов переменной длительности. Обычно длительность импульсов варьирует в интервале от 1 до 2 мс. Своей длительностью импульсы управляют положением вала сервомотора.
Команда pulsout генерирует на заданной шине импульс заданной длительности с шагом 10 мкс. Таким образом, команда pulseout 1, 150 будет выдавать импульсы длиной 1,5 мс на шине 1. Импульс длиной 1,5 мс повернет вал сервомотора в среднее положение.
Программа качания сервомотора
Демонстрационная программа будет качать вал сервомотора из левого положения в правое и обратно аналогично качанию параболической антенны радара. Схема устройства приведена на рис. 6.26.
Рис. 6.26. Схема включения сервомотора
Ниже приведена программа для компилятора PICBASIC:
‘Программа качания сервомотора
‘Компилятор PICBASIC
‘Программа осуществляет качание из левого положения в правое и обратно
b0 = 100 ‘Инициализация левого положения
sweep: ‘Процедура прямого прохода
pulsout 0,b0 ‘Посылка импульса в сервомотор
pause 18 ‘Ожидание 18 мс (от 50 до 60 Гц)
b0 = b0 + 1 ‘Увеличение длины импульса
if b0 > 200 then sweepback ‘Конец прямого хода?
goto sweep ‘Нет, продолжение прямого прохода
sweepback: ‘Процедура обратного прохода
b0 = b0 – 1 ‘Уменьшение длины импульса
pulsout 0,b0 ‘Посылка импульса в сервомотор
pause 18 ‘Ожидание 18 мс (от 50 до 60 Гц)
if b0 < 100 then sweep ‘Конец обратного хода?
goto sweepback ‘Нет
Программа для компилятора PICBASIC Pro:
‘Программа качания сервомотора
‘Компилятор PICBASIC Pro
‘Программа осуществляет качание из левого положения в правое и обратно
b0 var byte
b0 = 100 ‘Инициализация левого положения
sweep: ‘Процедура прямого прохода
pulsout portb.0,b0 ‘Посылка импульса в сервомотор
pause 18 ‘Ожидание 18 мс (от 50 до 60 Гц)
b0 = b0 + 1 ‘Увеличение длины импульса
if b0 > 200 then sweepback ‘Конец прямого хода?
goto sweep ‘Нет, продолжение прямого прохода
sweepback: ‘Процедура обратного прохода
b0 = b0 – 1 ‘Уменьшение длины импульса
pulsout portb.0,b0 ‘Посылка импульса в сервомотор
pause 18 ‘Ожидание 18 мс (от 50 до 60 Гц)
if b0 < 100 then sweep ‘Конец обратного хода?
goto sweepback ‘Нет
Нечеткая логика и нейронные датчики
При интерпретации данных сенсорных датчиков можно воспользоваться некоторыми интересными возможностями. С помощью микроконтроллера мы можем имитировать работу нейронных сетей и/или устройств с нечеткой логикой.
Нечеткая логика
Первые работы по нечеткой логике были опубликованы в 1965 году профессором Калифорнийского университета в Беркли Лотфи Заде. С самого начала принципы нечеткой логики как усиленно рекламировались, так и подвергались критике.
В сущности нечеткая логика пытается имитировать подход человека к определению групп и классов явлений. Определение «нечеткости» можно пояснить некоторыми примерами. Например, на основе какого критерия теплый солнечный день может быть определен, не как «теплый», но как жаркий и кем? Основанием, на котором кто-то определяет теплый день как жаркий, может служить персональное ощущение тепла, которое в свою очередь зависит от его или ее окружения (см. рис. 6.27).