Шрифт:
Проблема для экологов состоит в том, что редкие виды труднее изучать; к тому же исследования ограничены по времени. Поэтому экологи применяют математические модели для оценки возможности вымирания малой популяции через определенный срок. Построение таких моделей называется анализом популяционной жизнеспособности. При помощи этих моделей экологи могут предсказать результат природоохранных мероприятий и выработать стратегию охраны вида. В короткий период времени (несколько лет) модели дают довольно точные предсказания, но с увеличением временного масштаба появляется все больше неопределенности.
После преодоления «порога» минимального размера жизнеспособной популяции ее вымирание становится почти неизбежным, если не принимать никаких мер. Важно понять причины, по которым популяция становится малочисленной; нужно научиться предотвращать причину, а не устранять последствия. То же самое и при составлении математических моделей: они имеют дело уже с малой популяцией и не объясняют, как она достигла такого состояния. Единой теории по этому поводу не существует; причины, по которым виды становятся редкими, сложны и различны в каждом конкретном случае. Даже если мы понимаем причины вымирания вида, то часто не можем их устранить.
См. также статьи «Модели в экологии», «Природоохранная деятельность», «Редкие виды».
МОДЕЛИ В ЭКОЛОГИИ
Роль моделей в экологии всегда была спорным вопросом. Приверженцы моделей утверждают, что без теоретического обоснования экологи обречены собирать разрозненную информацию, они не способны связать ее воедино и осознать общую картину. Практики же говорят, что им не хватает времени на то, что другие называют моделями, что сами модели либо очень упрощенные, либо имеют малую практическую ценность, либо слишком отвлеченные и не отражают экологической реальности. Правы каждый по-своему приверженцы обеих точек зрения.
Модели полезны не столько тем, что их предсказания точно отражают реальность, порой эти предсказания могут оказаться достаточно точными, но совсем не по тем причинам, которые предполагались. Гораздо полезнее случаи, когда теория (модели) расходится с реальным положением дел. Тогда понятно, что первоначальные предположения неверны, и приходится задать вопрос: «Что именно неверно и почему?»
Как и эксперименты, модели не могут быть одновременно реалистичными, точными и обобщающими; в самом лучшем случае они объединяют два качества из трех. Существует два основных типа математических моделей: простые общие модели и детализированные модели. Каждый имеет вполне определенное назначение; затруднения возникают тогда, когда их используют не там, где нужно.
Простые общие модели помогают экологам мыслить строго, основываясь на ясно выраженных предположениях. Это своего рода «карикатуры» на природу, которые помогают прояснить сущность происходящих в ней процессов. Они не предназначены для подготовки точных предсказаний или для применения к конкретному виду в конкретном местообитании.
Детализированные модели ориентируют на конкретные виды. Для их построения требуется много информации, что позволяет давать достаточно точные предсказания. Они, например, полезны для разработки методов борьбы с вредителями или планов сохранения того или иного вида.
См. также статьи «Метапопуляция», «Минимальные размер популяции», «Обобщения в экологии», «Экспериментальная экология».
МОЛЕКУЛЯРНАЯ ЭКОЛОГИЯ
В прессе часто появляются заметки о том, что торговцы дикими животными пытаются продавать запрещенные виды или продукты, изготовленные из вымирающих видов животных, прикрываясь торговлей вполне легальным товаром.
Один из способов разрешения проблемы — использование генетических технологий, таких, как генетический анализ ДНК образцов и сравнение образцов для определения вида. Например, таким образом выяснилось, что некоторые продукты из китового мяса, продаваемые в Японии, сделаны из мяса охраняемых законом горбатого кита и финвала.
Такие примеры показывают, как можно использовать современные достижения молекулярной биологии в практической экологии и охране природы. Молекулярный анализ можно также применять для определения способности особей из одной местности приспособиться к другой, что важно при планировании увеличения численности популяций. В таком случае молекулярный анализ может помочь определить, какая из популяций генетически наиболее близка той популяции, численность которой планируется увеличить. Это очень важно, поскольку генетическое различие между популяциями может привести к большим проблемам. Молекулярная экология занимается также оценкой воздействия, которое генетически модифицированные виды могут оказать на окружающую среду.
Молекулярные технологии зарекомендовали себя и в других областях экологии. Например, их использовали при определении родителей птенцов предположительно моногамных птиц. Исследования показали, что «внебрачные» связи могут быть достаточно частыми и давать довольно внушительную часть потомства. Полученные данные легли в основу исследований возможного риска и выгод от связей самок с непостоянными партнерами, стратегий, которые постоянные партнеры применяют для предотвращения таких связей (например, наблюдение за самкой, повторное спаривание), а также того, как предположительная степень родства потомства может влиять на поведение самцов в воспитании детенышей.