Дьяконов Владимир Павлович
Шрифт:
Используя функцию dsolve, выполним решение этого дифференциального уравнения:
Нетрудно заметить, что результат получен также в форме кусочной функции, полностью определяющей решение на трех интервалах изменения х.
Приведем пример решения дифференциального уравнения второго порядка с кусочной функцией:
В заключении этого раздела приведем пример решения нелинейного дифференциального уравнения Риккати с кусочной функцией:
В ряде случаев желательна проверка решения дифференциальных уравнений. Ниже показано, как она делается для последнего уравнения:
Как видно из приведенных достаточно простых и наглядных примеров, результаты решения дифференциальных уравнений с кусочными функциями могут быть довольно громоздкими. Это, однако, не мешает эффективному применению функций этого класса.
7.3.3. Структура неявного представления дифференциальных уравнений — DESol
В ряде случаев иметь явное представление дифференциальных уравнений нецелесообразно. Для неявного их представления в Maple введена специальная структура
где exprs — выражение для исходной системы дифференциальных уравнений, vars — заданный в виде опции список переменных (или одна переменная).
Структура DESol образует некоторый объект, дающий представление о дифференциальных уравнениях, чем-то напоминающее RootOf. С этим объектом можно обращаться как с функцией, то есть его можно интегрировать, дифференцировать, получать разложение в ряд и вычислять численными методами.
На рис. 7.10 показаны примеры применения структуры DESol.
Рис. 7.10. Примеры применения структуры DESol
Обратите внимание на последний пример — в нем структура DESol использована для получения решения дифференциального уравнения в виде степенного ряда.
7.4. Инструментальный пакет решения дифференциальных уравнений DEtools
7.4.1. Средства пакета DEtools
Решение дифференциальных уравнений самых различных типов — одно из достоинств системы Maple. Пакет DEtools предоставляет ряд полезных функций для решения дифференциальных уравнений и систем с такими уравнениями. Для загрузки пакета используется команда:
Этот пакет дает самые изысканные средства для аналитического и численного решения дифференциальных уравнений и систем с ними. По сравнению с версией Maple V R5 число функций данного пакета в Maple 9.5 возросло в несколько раз. Многие графические функции пакета DEtools были уже описаны. Ниже приводятся полные наименования тех функций, которые есть во всех реализациях системы Maple:
• DEnormal — возвращает нормализованную форму дифференциальных уравнений;
• DEplot — строит графики решения дифференциальных уравнений;
• DEplot3d — строит трехмерные графики для решения систем дифференциальных уравнений;
• Dchangevar — изменение переменных в дифференциальных уравнениях;
• PDEchangecoords — изменение координатных систем для дифференциальных уравнений в частных производных;
• PDEplot — построение графиков решения дифференциальных уравнений в частных производных;
• autonomous — тестирует дифференциальные уравнения на автономность;
• convertAlg — возвращает список коэффициентов для дифференциальных уравнений;
• convertsys — преобразует систему дифференциальных уравнений в систему одиночных уравнений;
• dfieldplot — строит график решения дифференциальных уравнений в виде векторного поля;
• indicialeq — преобразует дифференциальные уравнения в полиномиальные;
• phaseportrait — строит график решения дифференциальных уравнений в форме фазового портрета;
• reduceOrder — понижает порядок дифференциальных уравнений;