Вход/Регистрация
Maple 9.5/10 в математике, физике и образовании
вернуться

Дьяконов Владимир Павлович

Шрифт:

При построении этого рисунка также используются функциональная окраска и построение контурных линий.

8.9. Визуализация решений уравнений и неравенств

8.9.1. Визуализация решения систем линейных уравнений

Системы линейных уравнений могут решаться как с помощью функции solve, так и с помощью матричных методов. Замечательной возможностью функции solve является возможность решения относительно ограниченного числа переменных. Например, систему линейных уравнений с переменными х, у, z, t и v можно решить относительно только первых трех переменных х, у и z. При этом решения будут функциями относительно переменных t и v и можно будет построить наглядный график решения (рис. 8.58).

Рис. 8.58. График, представляющий решения системы линейных уравнений

На рис. 8.58 система задана пятью равенствами: e1, e2, e3, е4 и е5. Затем функцией solve получено вначале решение для всех переменных (для иллюстрации), а затем для трёх переменных х, у и z. Для получения решения в виде списка, а не множества, как в первом случае для всех переменных, использована функция подстановки subs. После этого функция plot3d строит плоскость решения в пространстве.

8.9.2. Визуализация решения систем неравенств

Пожалуй, еще более полезным и наглядным средством является визуализация решения системы уравнений в виде неравенств. В пакете plots имеется специальная графическая функция inequal, которая строит все граничные линии неравенств и позволяет раскрасить разделенные ими области различными цветами:

inequal(ineqs, xspec, yspec, options)

Параметры этой функции следующие: ineqs — одно или несколько неравенств или равенств или список неравенств или равенств; xspec — xvar=min_x..max_x; yspec — yvar=min_y..max_y; о — необязательные параметры, например, указывающие цвета линий, представляющих неравенства или равенства, и областей, образованных этими линиями и границами графика. Пример применения этой функции представлен на рис. 8.59.

Рис. 8.59. Пример графической интерпретации решения системы неравенств

Обратите внимание на задание цветов: optionsfeasible задает цвет внутренней области, для которой удовлетворяются все неравенства (равенства), optionsopen и optionsclosed задают цвета открытых и закрытых границ областей графика, optionsexcluded используется для цвета внешних областей. График дает весьма наглядную интерпретацию действия ряда неравенств (или равенств).

8.9.3. Иллюстрация итерационного решения уравнения f(x)=х

Классическим методом решения нелинейных уравнений является сведение их к виду х = f(x) и применение метода простых итераций хk = s(хk-1) при заданном значении x0. Приведем пример такого решения:

> f := х ->3*ln(x+1);

f := х→3ln(x + 1)

> x||0 := 0.5;

x0 :=.5

> x0 := .5;

x0 :=.5

> for k from 1 to 16 do x||k := evalf(f(x||(k-1))); od;

x1 := 1.216395324
x2 := 2.387646445
x3 : = 3.660406248
x4 : = 4.617307866
x5 := 5.177557566
x6 : = 5.462768931
x7 := 5.598173559
x8 := 5.660378631
x9 := 5.688529002
x10 := 5.701181910
x11 := 5.706851745
x12 := 5.709388956
x13 := 5.710523646
x14 := 5.711030964
x15 := 5.711257755
x16 := 5.711359134

Нетрудно заметить, что значения х_k в ходе итераций явно сходятся к некоторому значению. Проведем проверку решения, используя встроенную функцию solve:

> f(x) = х; solve(%, х);

3 ln(x + 1) = х
0, -3LambertW(-1, -1/3e(-1/3))-1

Результат выглядит необычно — помимо довольно очевидного корня х=0 значение другого корня получено в виде специальной функции Ламберта. Впрочем, нетрудно найти и его численное значение:

> evalf(%);

0., 5.711441084

К нему и стремятся промежуточные результаты решения. Однако как сделать процесс решения достаточно наглядным? Обычно для этого строят графики двух зависимостей — прямой х и кривой f(x) — и наносят на них ступенчатую линии перемещения точки х_k. Специальной функции для графиков подобного рода Maple не имеет. Однако можно составить специальную процедуру для их построения. Ее листинг, взятый из примера, описанного в пакете обучения системе Maple — PowerTools —представлен на рис. 8.60.

  • Читать дальше
  • 1
  • ...
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: