Шрифт:
Полет на луче
Начало этим работам, пожалуй, положили эксперименты, проведенные на полигоне исследовательского центра Министерства связи Канады. А именно 6 октября 1987 года здесь состоялся первый полет опытного варианта беспилотного самолета «SHARP» (Stationary High-Altitude Relay Platform), представляющего собой стационарную высотную платформу-ретранслятор с двигателем на сверхвысокочастотной (СВЧ) энергии.
Самолет этот, имевший крыло с размахом 4 м, по мысли создателей представлял собой лишь уменьшенный прототип будущей машины.
На взлете и посадке питание электродвигателя с воздушным винтом осуществлялось за счет энергии бортовых никель-кадмиевых батарей. После взлета и подъема на высоту 90 м батареи отключались, и в дальнейшем полет осуществлялся за счет передачи на борт аппарата СВЧ-энергии с наземного передатчика при помощи параболической антенны.
На борту самолета находилась специальная приемная антенна, которая обеспечивала преобразование СВЧ-излучения сначала в постоянный, а затем и в переменный ток, необходимый для питания электродвигателя.
Предполагалось, что в дальнейшем усовершенствованный вариант самолета больших габаритов сможет подняться на высоту 2,5–3 км. Однако такой самолет до сих пор не появился. Почему?
Со временем выяснилось, что затраты на его создание оказались существенно выше, чем предполагалось. Ведь в окончательном варианте, по мнению разработчиков, самолет должен иметь размах крыла 36,6 м, длину фюзеляжа 23,8 м, диаметр диска с антеннами-выпрямителями 9,1 м и массу полезной нагрузки около 90 кг.
Чтобы обеспечить эффективный прием передаваемой энергии, на борту самолета предполагается установить около 10 тыс. антенн-выпрямителей. Они будут располагаться под консолями крыла и фюзеляжа, а также непосредственно на диске. Управление аппаратом обеспечит бортовой компьютер.
Чтобы передаваемой на борт самолета СВЧ-энергии хватило для поддержания полета, необходимо, чтобы ширина сфокусированного луча не превышала 30 м, давала мощность на ходе бортового электродвигателя не менее 30 кВт, а стало быть, плотность энергии на нижней части самолета должна составлять порядка 500 Вт/кв. м при полете на высоте до 21 км.
С этой целью выбрана частота передаваемого излучения 2,45 ГГц; при этом меньше потери энергетического пучка в воздушной среде. А чтобы передаваемый луч достиг приемной антенны, не распыляясь в пространстве более чем на 30 м в окружности, диаметр передающей антенны должен быть не менее 70 м.
Чтобы выбрать оптимальный вариант, разработчики предполагали рассмотреть несколько конструкций передающего оборудования — как в виде одной большой антенны, так и антенной системы. Одно из предложений предусматривает также использование системы из 260 параболических антенн с диаметром отражателя 4,6 м с механическими и электронными средствами управления пучком энергии.
В общем, трудностей оказалось предостаточно. Тем не менее разработчики полагают, что коммерческий самолет такого типа будет создан примерно к 2015–2025 годам.
Согласно расчетам, он должен выполнять барражирующие полеты по кругу диаметром 4,5 км на высоте 21 км при скорости 220 км/ч, охватывая площадь диаметром около 600 км. Продолжительность такого полета составит от 6 месяцев до 2 лет. А сам аппарат предполагается использовать как летающую антенну для ретрансляции программ регионального радиовещания, ведения прямых телепередач и обеспечения телефонной связи с подвижными транспортными средствами, наблюдения за океанской акваторией и для дальнего радиолокационного обнаружения низколетящих целей, ведения круглосуточного наблюдения за границами и т. д.
Ну а там, глядишь, подобные летательные аппараты смогут поднять на такие высоты, где голубое небо становится уже черным, то есть на космическую высоту.
Правда, пока и здесь эксперименты еще не вышли за пределы лабораторий и полигонов. Например, в одной из лабораторий Токийского технологического института можно увидеть, как лазерный луч сбивает со стола бумажный самолетик. На первый взгляд такой «аттракцион» — не более чем забава студентов и преподавателей, которыми руководит профессор Такоши Ейп. Однако с точки зрения исследователей, этот самолетик — предшественник летательных аппаратов будущего.
Первое, что приходит на ум: подобные модели с телекамерами и научной аппаратурой на борту, подталкиваемые лазерными лучами, смогут неограниченно долго держаться в воздухе, проводя мониторинг окружающей среды, выполняя разведывательные задачи и т. д.
Таково прогнозируемое будущее. Пока же бумажная модель имеет размах крыльев всего в 5 см и вес не более 0,3 г. На хвосте самолетика укреплена полоска алюминиевой фольги для отражения лазерного луча.
Но поскольку давление света невелико, то тягу пытаются увеличить с помощью… пара. Для этого алюминиевую фольгу смачивают несколькими каплями воды. Испаряясь под действием лазерного луча, она превращается в пар и создает реактивную тягу.