Шрифт:
если b = 1, то с = 1,618, а = 0,618;
если а = 1, то b = 1,618, с = 2,618.
Вот как древние ученые понимали пропорцию: «Две части или две величины не могут быть связаны между собой без посредства третьей… Достигается это… пропорцией (аналогией), в которой из трех чисел… среднее так относится ко второму, как первое к среднему, а такясе второе к среднему, как среднее к первому».
Стоит отметить особую роль среднего пропорционального. Оно содержит в себе качественное обобщение, так как выражается одним числом, а не множеством. Вот почему пропорции так существенны в выражении гармонии.
Основные пропорции:
1) арифметическая а – х = х – Ь, г
де среднее арифметическое
x= (а + b)/ 2;
2) геометрическая a/x = x/b,
где среднее геометрическое х = корень квадратный из ab;
3) гармоническая (a-x)/(x-b) = a/b,
где среднее гармоническое х находится по формуле 1/x = 1/2(1/a+1/b);
4) золотое сечение – это деление целого на две неравные части так, чтобы целое относилось к большей, как большая к меньшей: ( а + b)/a = a/b = (кв. корень из 5 + 1)/2 = 1,618 = Ф (число Фибоначчи),
где Ф в степени -1 = 0,618, Ф + 1 = Ф в квадрате.
Построим квадрат. Рассечем его пополам вдоль вертикали на две равные части и получим два полуквадрата – два прямоугольника с отношением сторон 1:2. Разделим его пополам, на этот раз по диагонали. Это действие повлекло за собой развитие новых качеств: неравенство углов и несоразмерность отрезков. Появились числа корень из 2 и корень из 5. Диагональ полуквадрата (колрень из 5) и есть отношение золотого сечения Ф: сторона 2 есть среднее между диагональю корень из 5, увеличенной на сторону 1, и этой же диагональю, уменьшенной на сторону 1.
(корень из 5 -1)/2 = 2/(корень из 5 – 1) = 1,61803398875… = Ф
Золотое сечение (Божественная пропорция) объединяет элементы целого (прямой угол и расстояние между вершинами 1, 2 и корень из 5) в целое – двойной квадрат.
Свойство аддитивности линейного ряда золотого сечения состоит в том, что каждый отрезок равен сумме или разности двух смежных отрезков.
С открытием в 1202 году ряда Фибоначчи было обнаружено основное свойство золотого сечения – единство аддитивности и мультика- тивности. Это и есть суть золотого сечения. В нем ключ к явлению формообразования, открыто лежащий на поверхности математического знания. Но чтобы увидеть эту особенность, потребовалось сначала обнаружить механизм формообразования индуктивным путем.
В математике понятие «аддитивность» означает, что в числовом ряду Ф 1; Ф 2, Ф 3, Ф 4… Ф n-1, Ф nкаждый последующий член равен сумме двух предыдущих. Причем за начало такого ряда можно принять любые два числа, например 0 и 1, 1 и 3 или 1 и 4 и т. д.
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610…
1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207… 1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, 665, 1076, 1741, 2817…
Мультипликативность означает, что в числовом ряду Ф 1, Ф 2, Ф 3, Ф 4… Ф n-1, Ф nвсе члены ряда связаны в геометрическую прогрессию: Ф 1: Ф 2= Ф 2: Ф 3= Ф 3: Ф 4=…= Ф n-1: Ф n= const.
Число золотого сечения, соединяющее свойства аддитивности и мультипликативности, находится как общий корень двух уравнений:
а + b = с (аддитивность)
а : b = b : с (мультипликативность),
в которых целое «с» представлено состоящим из двух частей а + Ь. Отношение золотого сечения – широко распространенная закономерность организации живой природы, которая за единством аддитивности и мультипликативности скрывает глобальный принцип построения мироздания.
Понятие аддитивности свидетельствует о том, что целое структурно… Понятие мультипликативности означает, что на все части структурно организованного целого распространяется одна и та же закономерность роста.
Например, в природе золотое сечение распространено очень широко – как числовая характеристика членения стеблей растений, их расположения на стволе, закручивания спиралей подсолнечника, описание пропорций человеческого тела, строения раковины, яйца, яблока и т. д.
Поликлет. Дорифор. V в. до н. э.
Певучесть скрипки, красота ее голоса находится в прямой зависимости от того, в какой мере форма инструмента согласована с пропорцией золотого сечения. Анализ музыкальных произведений в диапазоне от Баха до Шостаковича продемонстрировал метрические отношения основных разделов музыкальных форм, а также золотое сечение. Таким образом, законы гармонии обнаруясены в музыкальных рядах, в таблице Менделеева, в расстояниях между планетами, в микро- и макрокосмосе, во многих областях науки. Скульптура, архитектура, астрономия, биология, техника, психология и т. д. – везде так или иначе проявляет себя золотое сечение.