Вход/Регистрация
Ракеты и полеты в космос
вернуться

Лей Вилли

Шрифт:

Вторая группа включала в себя перхлораты. На первый взгляд эти вещества кажутся более эффективными, чем нитраты, так как выделяют в среднем более 50% (по весу) кислорода. Так, перхлорат магния (MgCl04) выделяет 57,2% кислорода. Но химики отвергли это вещество из-за его чрезвычайно высокой гигроскопичности. Следующим по количеству выделяемого кислорода (52%) является перхлорат натрия (NaCl04), тоже весьма гигроскопичное соединение, которое при горении выбрасывает твердое вещество — поваренную соль. Еще один окислитель этой группы, перхлорат калия (KClO4), дает почти 46% кислорода, но так же, как и перхлорат натрия, образует твердый остаток—хлористый калий (КСl). Последний в группе—перхлорат аммония (NH4Cl04); он высвобождает до 34% кислорода, не изменяет объема, как нитрат аммония, и не выбрасывает с продуктами сгорания никаких твердых веществ. Но одним из продуктов сгорания перхлората аммония является хлористый водород (НСl) — крайне токсичное и весьма активное вещество, которое в сыром воздухе образует туман.

Из всех перечисленных окислителей только перхлорат калия может быть использован в ракетном двигателе, и он действительно был применен в качестве топливного компонента Гуггенхеймской авиационной лабораторией Калифорнийского института технологии (сокращенно GALCIT) [21] .

Однако мы забыли еще об одной группе химических веществ с высокими окислительными свойствами—о так называемых пикратах, основой которых является пикриновая кислота. Эта кислота может служить взрывчатым веществом, и, кроме того, она довольно токсична. Ее полное название — тринитрофенол (НО • С6Н2(N02)3). Химики относят ее к типичным нитросоединениям ароматического ряда, а военные называют ее лиддитом или мелинитом.Очень чистая пикриновая кислота сама по себе вполне безопасна, но она легко образует при реакциях с металлами некоторые соли — пикраты, чрезвычайно чувствительные к трению или нагреванию. Пикраты тяжелых металлов, особенно таких, как свинец, детонируют при малейшей встряске. С пикратами легких металлов обращаться легче; уже давно известны такие пикратные пороха, как порох Брюжера и порох Дезиньоля, которые применялись как для гражданских взрывных работ, так и для военных целей. Порох Брюжера состоял на 54% из пикрата аммония, на 45% из нитрата калия и 1% инертных веществ. Порох Дезиньоля включал в себя пикрат калия, нитрат калия и древесный уголь.

21

Это топливо состояло из 70—78% КСlO4 и 22—30% асфальта с небольшим добавлением асфальтового маcла. (Прим. авт).

В настоящее время применяется пороховая ракетная смесь, близко напоминающая порох Брюжера, которая состоит из пикрата аммония (40—70%), нитрата калия (20—50%) и твердой добавки.

Однако, несмотря на определенную перспективность пикратных порохов, более употребительными стали все же старые двухосновные пороха Нобеля, которые теперь изготовляются не в виде прессованных шашек, а в форме литых пороховых зарядов. Прессованные шашки Нобеля обычно включали в себя 50—60% нитроклетчатки, 30—45% нитроглицерина и 1—10% других веществ, литые же заряды наряду с нитроклетчаткой (45—55%) и нитроглицерином (25—40%) содержат еще до 12—22% пластификатора и около 1—2% различных специальных добавок.

Замена прессования отливкой позволила создавать заряды толщиной более 30 см и длиной свыше 180 см, высвобождающие всю энергию, заключенную в них, в течение 2,5—3 секунд и создающие тем самым огромный начальный импульс. Большие литые пороховые заряды окружены слоем пластмассы, который плотно прилегает к стенкам корпуса ракетного двигателя.

Один из таких больших ускорителей показан в разрезе на рис. 33. В этом образце передняя плита давит на заряд с помощью мощной пружины. Это позволяет фиксировать положение заряда и иметь небольшое пространство для компенсации теплового расширения заряда в начале горения. Заряд воспламеняется спереди, а горение развивается от центрального канала к периферии заряда. Путем придания центральному каналу определенной формы можно обеспечить регулировку внутреннего давления. Рассмотренная выше крестообразная шашка, например, горит таким образом, что внутреннее давление является максимально высоким в момент воспламенения заряда, в то же время толстостенная трубчатая шашка теоретически обеспечивает постоянное давление в камере сгорания в течение всего периода работы двигателя; такое горение называется горением при неизменной тяге. Если давление в камере сгорания поднимается с момента воспламенения и возрастает до тех пор, пока весь заряд не выгорит, имеет место, как говорят, горение с возрастанием тяги. Такое горение наиболее характерно для шашки, выполненной в форме стержня с несколькими продольными каналами; менее присуще оно таким шашкам, которые плотно прилегают к стенкам корпуса двигателя и имеют только один центральный канал. Если последний имеет не круглую, а звездообразную форму, происходит интересное явление: заряд горит с небольшим возрастанием тяги в течение первой четверти секунды, затем, в продолжение 2 секунд, горит с падением тяги, после чего тяга снова возрастает. К тому же звездообразное сечение центрального канала предъявляет весьма небольшие требования к прочности корпуса и таким образом позволяет уменьшить его вес.

Рис. 33. Ускоритель на твердом топливе

Такие ускорители применяются для запуска больших управляемых снарядов, например самолетов-снарядов «Матадор». Было также несколько попыток использовать их на экспериментальных пилотируемых самолетах-истребителях. Кроме того, пробовали ставить ракетные ускорители на специальные ракетные салазки и тележки для проверки влияния больших ускорений и замедлений на организм человека. Подобные ускорители были испытаны и на зенитных ракетах, что привело к созданию совершенно нового типа исследовательских ракет, которые рассматриваются в последующих главах книги. И, наконец, эти тяжелые литые заряды позволили создать новые ракеты класса «земля—земля», способные нести тяжелую боевую головку, в том числе и атомную, на расстояние, соответствующее дальности стрельбы самой дальнобойной артиллерии.

Рис. 34. Ракета «Онест Джон» и траектории ее полета

Ракета, которую я имею в виду, называется «Онест Джон» (рис. 34). Эта тщательно испытанная и вполне надежная система, официально именуемая артиллерийской ракетой М-31, имеет пусковую установку типа ХМ-289 с углом возвышения около 45°. По внешнему виду «Онест Джон» напоминает огромную ракету «Базука», главным образом из-за массивной заостренной боевой головки. 4 октября 1956 года во время показа на Абердинском полигоне одна из ракет «Онест Джон» покрыла расстояние 20 800 м, а вторая прошла 20 600 м.

Характерным в ракете «Онест Джон» является то, что она не имеет никакой системы наведения; наводка осуществляется, подобно артиллерийскому орудию, посредством изменения угла возвышения пусковой установки. Поскольку все пороха горят с различной скоростью, во многом зависящей от температуры окружающего воздуха, результаты запусков неуправляемых ракет не совсем одинаковы. Чтобы как-то снизить температурное влияние окружающего воздуха, ракета «Онест Джон» снабжается специальными термоэлектрическими покрывалами. В условиях низких температур эти покрывала поддерживают оптимальную температуру порохового заряда. В настоящее время создан уменьшенный вариант ракеты «Онест Джон» — так называемый «Литтл Джон» ХМ-47. Эта ракета имеет калибр 318 мм.

Глава восьмая. Пенемюнде

На мировую историю очень часто влияют случайные факторы. Так, первые большие ракеты появились у немцев только потому, что в известном международном договоре не было ничего сказано о ракетах. И построены они были в Пенемюнде — уединенном уголке Германии, о существовании которого главный конструктор этих ракет знал только потому, что его отец охотился там когда-то на уток.

Как уже отмечалось, немецкая сухопутная армия, а точнее, специалисты отдела баллистики и боеприпасов управления вооружений сухопутных войск, руководимого Беккером, много думали о ракетах. Ракеты на твердом топливе давали те выгоды, о которых в свое время говорил еще Конгрев. Для них не были нужны запрещенные Германии артиллерийские орудия, и вся задача состояла только в том, чтобы сделать их безопасными и надежными. Жидкостные ракеты давали, по крайней мере теоретически, возможность стрелять дальше, чем это делала артиллерия. К тому же теория говорила, что ракеты будут в отличие от самолета неуязвимы в полете. Именно этими обстоятельствами и было продиктовано решение, принятое в 1929 году, о возложении на отдел баллистики ответственности за разработку ракет.

  • Читать дальше
  • 1
  • ...
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: