Вход/Регистрация
Курс истории физики
вернуться

Степанович Кудрявцев Павел

Шрифт:

В современных обозначениях предложение Эйлера записывают так:

F1/F2 = m1/m2 = a

где а - одинаковое действие силы на тело, т. е. ускорение. Отсюда:

F1/m1 = a, F2/ m2 = a,

или вообще:

F = ma.

В своей «Механике» Эйлер записывает основное уравнение динамики для прямолинейного движения в следующем виде:

dc=npdt/A где dc - дифференциал скорости, р -сила, А - масса, п - коэффициент пропорциональности.

Подчеркнем, что Эйлер знал векторный характер силы и принимал за ее направление ту прямую, «по которой она стремится двигать тело». В «Теории движения твердых тел» Эйлер выписывает уравнения движения тела, разлагая это движение на три прямолинейные составляющие по осям. Они в обозначениях Эйлера имеют вид:

где р, q, r - компоненты действующей силы по осям координат, А — масса точки, — коэффициент пропорциональности, определяемый выбором единиц.

Таким образом, Эйлер переформулировал основные понятия ньютоновской механики, придав им более ясную форму, сохранив, однако, сущность ньютоновских определений; выдвинул на центральное место второй, закон, сделав его стержнем всей механики и придав ему аналитическую форму. С помощью этого закона Эйлер в «Механике» рассматривает различные случаи движения свободной и несвободной точки.

В «Теории движения твердого тела» Эйлер развил механику вращательного движения, введя такие фундаментальные понятия, как главные оси, проходящие через центр инерции, по отношению к которым момент инерции имеет экстремальное значение. Свободную ось вращения Эйлер определяет как ось, которая не испытывает никакого силового воздействия при вращении тела вокруг нее.

Еще в 1758 г. Эйлер написал уравнения вращательного движения твердого тела, отнесенные к главным осям, в следующем виде:

где р, q, r - угловые скорости вращения относительно трех главных осей, жестко связанных с телом; А, В, С - главные моменты инерции; L, М, N - моменты сил, приложенных к телу, относительно тех же главных осей.

Как видим, Эйлер внес существенный вклад в развитие механики. Написанные им уравнения до cего времени «работают» в современных курсах.

В XVIII в. происходило не только преобразование методов ньютоновской механики. Этот век отмечен поисками общих принципов механики, эквивалентных законам Ньютона, или даже более общих, чем эти принципы. В результате этих поисков были открыты принципы возможных перемещений в статике, принцип Даламбера и принцип наименьшего действия Мопер-тюи — Эйлера в динамике.

Лагранж в своем труде «Аналитическая механика», излагая историю развития принципов статики, относит первые формулировки соотношений между силами, действующими в простых механизмах, и проходимыми путями к Гвидо убальдо и Галилею. Лагранж считает, что «древние, по-видимому, не знали этого закона». Однако у Герона Александрийского встречается «золотое правило механики» в виде утверждения: «Что выигрывается в силе, то теряется в скорости». Многие историки науки считают, что это правило было известно еще Аристотелю. Эмпирически это правило, несомненно, было знакомо людям, имеющим дело с простыми механизмами, очень давно.

Принцип возможных перемещений, который Лагранж называет принципом виртуальных скоростей, был сформулирован И.Бернулли в 1717 г. в письме к Вариньону и опубликован в «Новой механике» в 1725 г. Лагранж формулирует этот принцип следующим образом:

«Если какая-либо система любого числа тел или точек, на каждую из которых действуют любые силы, находится в равновесии и если этой системе сообщить любое малое движение, в результате которого каждая точка пройдет бесконечно малый путь, представляющий ее виртуальную скорость, то сумма сил, помноженных каждая соответственно на путь, проходимый по направлению силы точкой, к которой она приложена, будет всегда равна нулю, если малые пути, проходимые в направлении сил, считать положительными, а проходимые в противоположном направлении считать отрицательными».

Лагранж доказывал этот принцип, моделируя систему сил при помощи полиспастов и сводя действие этой системы к подъему или опусканию груза. Равновесие системы сил будет достигнуто тогда, когда при любом бесконечно малом перемещении точек системы груз не опускается. Лагранж указывал, что принцип виртуальных скоростей «дал повод для появления другого принципа, предложенного Мопертюи в 1740 г.».

История принципа П. Мопертюи также восходит к Герону, к утверждению о кратчайшем времени распространения света, которым Герои обосновал закон отражения.

Ферма применил этот принцип к преломлению света и вывел закон преломления, исходя из постулата: «Природа действует наиболее легкими и доступными путями». Свой вывод он изложил в письме к де ла Шамбру от 1 января 1662 г.

Иоганн Бернулли (1667—1748) сопоставил принцип ферма с предложенной им в 1696 г. вариационной механической задачей о линии быстрейшего ската тяжелой точки в поле тяжести (брахистохроне). Эту задачу Бернулли сформулировал так: «В вертикальной плоскости даны две точки Л и В. Определить путь АМВ, спускаясь по которому под влиянием собственной тяжести, тело М, начав двигаться из точки А, дойдет до другой точки В в кратчайшее время»

  • Читать дальше
  • 1
  • ...
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: