Шрифт:
Именно эту идею Гамильтон кладет в основу своей системы. Но для того чтобы определить движение системы точек, надо интегрировать дифференциальные уравнения второго порядка, «число которых втрое больше числа притягивающихся или отталкивающихся точек».
Естественно, что с увеличением числа точек эта задача необычайно усложняется, и для десяти точек, например, надо интегрировать тридцать дифференциальных уравнений второго поря дка. Гамильтон предлагает метод, в котором «задача сводится к отысканию и дифференцированию одной-един-ственной функции, удовлетворяющей двум уравнениям в частных производных первого порядка и второй степени». Эту функцию Гамильтон называет характеристической, она определяется интегралом
где 2Т - «полная живая сила» сумма произведений масс частиц на квадраты их скоростей. Она связана с введенной Гамильтоном функцией Н, определяемой законом живой силы Т = U + Н, уравнением
Соотношение Т = U + Н, где U - силовая функция, сейчас записывают в виде: H=T+U,
где U - потенциальная энергия, отличающаяся от силовой функции U Гамильтона знаком.
Во второй статье — «Второй очерк об общем методе в динамике», опубликованной в 1835 г., Гамильтон вводит вместо характеристической функции V главную функцию S. Он применяет свою знаменитую систему канонических уравнений, которая в современной форме, в случае консервативных сил, имеет вид:
Число этих уравнений n (i = 1, 2, ., ., n) равно числу степеней свободы системы. Главная функция S вводится уравнением:
Она сейчас носит название «действия», и канонические уравнения получаются из принципа наименьшего действия.
Работам Гамильтона по динамике предшествовали его работы по оптике лучей, написанные им в период 1827— 1832 гг., под общим названием «Теория систем лучей». Гамильтону принадлежит заслуга в установлении оптико-механической аналогии, сыгравшей важную роль в истории создания волновой механики Шредингера.
Метод Гамильтона в динамике был разработан и развит в «Л екциях по динамике» Карла ГуставаЯкоби (1804—1851). Якоби был родным братом русского академика Бориса Семеновича Якоби и сам был почетным членом Петербургской Академии наук.
Теория Гамильтона—Якоби получила широкое применение в XX в. в решении задач атомной механики. Оператор Гамильтона, или «гамильтониан», является одним из основных операторов современной квантовой механики, и таким образом полузабытая физиками теория механики и оптики обрела новую жизнь в нашем столетии.
Развитие механики в первой половине XIX столетия
Прежде чем перейти к описанию событий в истории физики началаХ1Х столетия, расмотрим коротко развитие механики в первой половине XIX в.
Трудами Эйлера, Лагранжа и других математиков и механиков XVIII в. сформировалась та отрасль математического естествознания, которая получила название теоретической механики. В качестве таковой она выделилась из физики, и ее развитие было более тесно связано с развитием математики, чем физики.
В историю механики существенный вклад внесли и русские ученые: математик и механик М. В. Остроградский (1801-1862), имя которого встречается в физике в связи с теоремой Остроградского—Гаусса, П.Л.Чебышев (1821— 1894), А.М.Ляпунов (1857-1918) и многие другие.
Деятельность европейских и русских механиков XIX в. рассматривается в истории механики, и мы на ней останавливаться не будем. Мы упомянем здесь коротко о некоторых механиках, работавших после Лагранжа, продолживших его дело и внесших в механику новые понятия, важные для физики.
В 1803 г. вышел груд Луи Пуансо (1777—1859) «Элементы статики «Пуансо ввел новое динамическое понятие пары сил, изучил свойства пар, сформулировал общий закон сложения сил, действующих на тело, и общие условия равновесия.
В1811 г. вышел «Трактат о механике» Симеона Пуассона (1781—1840). В этом трактате Пуассон развивает и популяризирует традиции Лагранжа, иллюстрируя общие предположения многочисленными примерами. «Трактат» Пуассона долгие годы служил учебным пособием по механике.
Математик Жан Виктор Понселе (1788—1867), бывший солдат наполеоновской армии и русский военнопленный, ввел в механику важное понятие работы. Это понятие фигурирует и в «Трактате о механике твердых тел и о расчете действия машин» (1829.) Гас-пара Гюстава Кориолиса (1792—1843). Кориолис открыл также ускорение, испытываемое движущимися телами во вращающейся системе, и соответствующую силу инерции. Это ускорение ныне известно под названием «кориолисово ускорение», а сила — под названием «сила Кориодиса» (1835).
В 1829 г. вышла работа знаменитого немецкого математика К. ф. Гаусса (1777—1855) «Об одном новом общем принципе динамики». В этом сочинении Гаусс предлагал положить в основу механики вместо принципа наименьшего действия другой, который он формулировал следующими словами: «Движение системы материальных точек, связанных между собою произвольным образом и подверженных любым влияниям, в каждое мгновение происходит в наиболее совершенном, какое только возможно, согласии с тем движением, каким обладали бы эти точки, если бы все они стали свободными, т. е. оно происходит с наименьшим возможным принуждением, если в качестве меры принуждения, примененного в течение бесконечно малого мгновения, принять сумму произведений массы каждой точки на квадрат величины ее отклонения от того положения, которое она заняла бы, если бы была свободной».