Шрифт:
Рассмотрим далее токсикологические особенности гидразина (N2H4) и его соединений, которые широко используются в промышленности (производство пластических масс, синтетических смол, каучука, красителей, взрывчатых веществ и др.), как ядохимикаты и химические реактивы, а также в клинической медицине при лечении туберкулеза, опухолевых заболеваний и в качестве психофармакологических средств. Кроме того, соединения гидразина как сильные восстановители применяются для стабилизации жиров, фруктовых соков и других продуктов, о некоторые из них используются как регуляторы роста растений. Несмотря на различия в химическом строении отдельных представителей этого класса соединений, их объединяют важнейшие признаки резорбтивного действия, которые мало зависят от путей поступления веществ в организм. При воздействии на организм больших доз гидразина и высокотоксичных веществ, синтезированных на его основе, на первый план выступают расстройства со стороны нервной системы: головная боль, возбуждение, судороги, потеря сознания, параличи, а также симптомы поражения печени.
Теперь не вызывает сомнения, что основным первичным объектом их токсического воздействия на молекулярном уровне является уже знакомый нам фермент глутаматдекарбоксилаза, а во взаимодействие с ядами вступает ее кофермент — пиридоксальфосфат. Один из возможных механизмов такой реакции представлен в виде следующей схемы:
Таким образом, гидразин и его соединения блокируют реакцию превращения глутаминовой кислоты в ГАМК. Имеются данные, согласно которым ряд гидразинов связывает также ГАМК-трансаминазу и, кроме того, тормозит синтез пиридоксальфосфата. Тем самым еще больше усложняется цепь нарушений передачи импульсов в центральной нервной системе, главным образом — тормозных. Этим, однако, не ограничивается механизм влияния рассматриваемых ядов на организм. Считается доказанным, что многие из них, подобно сероуглероду, ингибируют и моноаминоксидазу, а следовательно, тормозят окислительное дезаминирование катехоламинов и серотонина и приводят к их накоплению в адренергических структурах. Это в свою очередь вызывает избыточную функцию адренорецепторов центральной нервной системы и, по-видимому, лежит в основе возникновения таких симптомов, как психомоторное возбуждение, эйфория и т. п.
Итак, изложенное показывает, что многие ядовитые вещества вмешиваются в обмен биогенных аминов посредством блокирования пиридоксалевых ферментов. Основываясь на приведенных молекулярных механизмах и по аналогии с антихолинэстеразными ядами (см. с. 65), можно наметить несколько рациональных направлений антидотного воздействия на течение интоксикаций этими веществами. Однако существующие знания о структуре и биохимических свойствах адренореактивных систем и механизмах ингибирования пиридоксалевых ферментов позволяют реализовать (или предсказать реализацию в скором будущем) только те из них, при которых осуществляется:
а) заместительное действие противоядия и
б) влияние па функцию адренорецептивных структур
Витамин В6, глутаминовая кислота и препараты меди как антидоты
Витамины B6, или пиридоксин
93
Черный 3. X. Некоторые вопросы патогенеза сероуглеродной интоксикации и подходы к ее специфической терапии. Автореф, канд. дис. Л., 1969.
94
Лазарев Н. В. Основные принципы лечения острых отравлений. Л., 1944, с. 108.
Витамин В6 (в виде хлорида пиридоксина) при острых отравлениях рекомендуется назначать в больших дозах. [95] В то же время при хронических формах отравлений, а также с профилактической целью применяются сравнительно небольшие его количества. Так, специально разработанная сотрудниками Ленинградского НИИ гигиены труда и профессиональных заболеваний инструкция [96] рекомендует для нормализации функциональных сдвигов в организме при хронической интоксикации сероуглеродом ежедневную дозу пиридоксина, равную 50 мг (1 мл 5%-ного раствора). С этой же целью инструкция предписывает комбинировать пиридоксин с глутаминовой кислотой. Механизм ее действия, как считают, [97] состоит прежде всего в химическом связывании яда и ускорении его выведения из организма. С другой стороны, в качестве антидота глутаминовая кислота должна рассматриваться и как биохимический предшественник ГАМК. Это ее свойство может оказаться полезным для специфического воздействия на течение и других интоксикаций, при которых нарушается обмен данного медиатора. [98]
95
Например, при тяжелой гидразиновой интоксикации вводят одномоментно до 1.5 г этого препарата, причем такая доза может назначаться повторно (Back К. С., Pinkerton M. К., Thomas A. A. Therapy of acute UDMH intoxication. — Aerospace Med., 1963, v. 34, p. 1001–1004).
96
Инструкция по применению витамина В6 и глутаминовой кислоты для лечения хронических сероуглеродных интоксикаций. Л.: Ленинград. НИИ гигиены труда и проф. заболеваний, 1968.
97
Абрамова Ж. И. Вопросы специфической профилактики некоторых профессиональных интоксикаций. — В кн.: Матер. науч. сессии, посвящ. 40-летию НИИ гигиены труда и проф. заболеваний. Л., 1964, с. 102–105.
98
Глутаминовую кислоту рекомендуется применять внутрь в виде кальциевой соли по 20–50 мг или же внутривенно по 10 мл 10%-ного раствора.
В последнее время для лечения различных нарушений функционирования центральной нервной системы все больше используется гаммалон — препарат гамма-амино-масляной кислоты. Его назначают внутрь в таблетках по 0,25 г и для введения в вену в виде 5%-ного раствора. Можно предположить, что этот препарат найдет практическое применение и как заместительное антидотное средство в первую очередь при гидразиновых отравлениях.
Тот факт, что яды-ингибиторы моноаминоксидазы имеют химическое сродство к меди, входящей в состав данного фермента, давно наводил исследователей на мысль о применении этого микроэлемента при соответствующих отравлениях. И действительно, оказалось, что соединения меди, в частности уксусномедная соль, препятствуют развитию нарушений обмена веществ при сероуглеродной и гидразиновых интоксикациях, резко понижают накопление этих ядов и продуктов их превращений в организме, а также нормализуют метаболизм биогенных аминов. Все это, несомненно, свидетельствует о том, что препараты меди проявляют свойства антидотов. Вполне оправданы поэтому рекомендации по их практическому применению. Так, в настоящее время предписывается дополнительно вводить ацетат меди (совместно с пиридоксином) в рацион лечебно-профилактического питания лиц, контактирующих на производстве с сероуглеродом и другими дитиокарбаматами, а также обязательно включать его в комплекс антидотных средств при соответствующих интоксикациях.
Адреноблокаторы
Теоретически антидотньм эффектом при интоксикации ядами-ингибиторами пиридоксалевых ферментов должны обладать (по аналогии с холинолитиками) препараты, которые обратимо, но быстро и на достаточно длительный срок выключают адренорецепторы из механизма нервной передачи. Такими свойствами обладает большое число веществ, известных в фармакологии под названием адреноблокаторов. В зависимости от того, какой тип рецепторов преимущественно блокируется, их подразделяют на - и -адреноблокаторы. К первым относятся производные спорыньи (эрготамин, редергам), фентоламин, дибенамин, фенитрон. В числе вторых — пронеталол, индерал, дихлоризопротеренол, аптин, а также отечественный аналог индерала — анаприлин. Эти вещества, в особенности -адреноблокаторы, все более широко используются в клинике внутренних болезнен при различных патологических состояниях (например, при болезнях сердечно-сосудистой системы). Можно с уверенностью предсказать их использование в качестве антидотов для снятия явлений перевозбуждения адренорецепторов. [99] Не исключено, что адреноблокаторы окажутся полезными и для профилактики отравлений ингибиторами моноаминоксидазы, а также веществами, непосредственно стимулирующими функцию адренорецепторов. В предполагаемом механизме действия адреноблокирующих антидотов можно усмотреть и структурный компонент. Это, например, иллюстрируется сопоставлением строения молекулы адреналина и -адреноблокатора дихлоризопротеренола:
99
Защитное действие -адреноблокаторов нередко сопровождается побочными эффектами, что связывается с необратимостью их реагирования с рецепторами ряда внутренних органов и центральной нервной системы.
Естественно поэтому предположить, что конкурентный антагонизм этих веществ основывается на присоединении их молекул к одним и тем же звеньям адренорецепторной структуры.
Таким образом, в перспективном плане адреноблокирующие соединения можно рассматривать как противоядия. Расширяющийся диапазон их терапевтического применения несомненно будет способствовать внедрению этих веществ в токсикологическую практику.
Диэтиламид лизергиновой кислоты и его антагонисты