Шрифт:
[Клеточки с 4, 8 и 7 излишне сложны. Возможно более простое решение:
380. Объяснение содержится в самом решении (см. рисунок). Суммы чисел, стоящих в строках, столбцах и на двух диагоналях, равны 6726, а каждая из цифр 1, 2, 3, 4 использована ровно девять раз.
381. Начав с правого верхнего угла, а затем двигаясь вниз «вокруг квадрата», заполните клетки числами в следующем порядке: 13, 81, 78, 6, 75, 8, 15, 16, 77, 70, 19, 79, 21, 9, 23, 2, 69, 66, 67, 74, 7, 76, 4, 1, 5, 80, 59, 73, 61, 3, 63, 12. Очевидно, противоположные числа на границе должны в любом случае давать в сумме 82, но их правильного расположения добиться не так-то легко. Разумеется, существуют и другие решения.
382. На рисунке приведено одно решение с нечетными и четными числами.
383. Назовем ABCDE«пятиугольником», a F, G, H, J, K«вершинами» ( I). Запишем в пятиугольнике числа 1, 2, 3, 4, 5, как показано на рисунке II (мы начинаем с 1 и движемся по часовой стрелке, перескакивая каждый раз через один кружок). Чтобы заполнить звезду с суммой 24, воспользуйтесь следующим простым правилом. Найти Hможно, вычитая сумму Bи Cиз половины данной постоянной (24) и прибавляя E. Другими словами, надо 6 вычесть из 15, при этом получится искомое значение H, равное 9. Затем можно вписать в кружок Fчисло 10 (чтобы сумма оказалась равной 24), вписать 6 в J, 12 в Gи 8 в K. Решение получено.
Вы можете вписать в пятиугольник любые 6 чисел в любом порядке и с произвольной постоянной суммирования. В каждом случае вы получите с помощью указанного правила единственно возможное решение для данных пятиугольника и постоянной. Однако в этом решении могут встретиться повторяющиеся или даже отрицательные числа. Допустим, например, что я задал пятиугольник 1, 3, 11, 7, 4 и постоянную 26 (см. рисунок III). Тогда видно, что 3 повторяется, а добавочное число 4 отрицательно и практически его приходится вычитать, а не прибавлять. Вы можете также заметить, что если бы в случае IIмы заполнили пятиугольник теми же числами, но в другом порядке, то получили бы при этом повторяющиеся числа.
Ограничимся случаем десяти различных положительных целых чисел. Тогда 24 будет наименьшей возможной постоянной. Решение с любой большей постоянной можно получить из данного. Так, если мы хотим взять постоянную, равную 26, то достаточно добавить в вершины по 1. Если мы хотим взять постоянную 28, то в каждую вершину следует добавить по 2 или по 1 во все кружки. Для нечетных постоянных решений не существует, если мы не допускаем дроби. Каждое решение можно «вывернуть наизнанку». Так, рисунок IV — модификация рисунка II. Аналогично четыре числа в G, K, D, Jможно всегда изменить, если нет повторений, например вместо чисел 12, 8, 5, 6 на рисунке IIподставить числа 13, 7, 6, 5. Наконец, в любом решении постоянная равна 2/5 суммы всех десяти чисел. Поэтому если задано множество чисел, то мы можем определить постоянную, а по заданной постоянной найти сумму всех нужных чисел.
384. За недостатком места я не смогу здесь привести полное решение этой интересной задачи, но укажу читателю основные моменты.
1. При любом решении сумма чисел в треугольнике ABC(см. рисунок I) должна совпадать с суммой чисел в треугольнике DEF. Эта сумма может равняться любому числу от 12 до 27 включительно, кроме 14 и 25. Нам нужно получить решения лишь для случаев 12, 13, 15, 16, 17, 18 и 19, поскольку дополнительные решения 27, 26, 24, 23, 22, 21 и 20 можно получить из них, заменяя каждое число на разность между ним и 13.
2. Каждое решение составлено из трех независимых ромбов AGHF, DKBLи EMCI, сумма чисел в каждом из которых должна равняться 26.
3. Суммы чисел в противоположных внешних треугольниках равны между собой. Так, сумма чисел в треугольнике AIKравна сумме чисел в треугольнике LMF.
4. Если разность между 26 и суммой чисел в треугольнике ABCприбавить к любому числу, стоящему в вершине, скажем A, то получится сумма двух чисел, находящихся в соответствующих положениях Lи M. Так (см. рисунок II), 10 + 13 = 11 + 12 и 6 + 13 = 8 + 11.
5. Существует 6 пар, дающих в сумме 13, а именно 12 + 1, 11 + 2, 10 + 3, 9 + 4, 8 + 5, 7 + 6, и среди вершин может оказаться 1 или 2 такие пары, но никогда не окажется 3. Относительное расположение этих пар определяет тип решения. У регулярного типа, как на рисунке II, Aи F, а также Gи H(что показано пунктирными линиями) в сумме всегда дают 13 (при более подробном доказательстве этот класс необходимо было бы разбить на 2 подкласса и рассматривать каждый из них в отдельности). На рисунках IIIи IVприведены примеры двух нерегулярных типов.
Всего существует 37 решений (или 74, если мы будем считать и дополнительные решения, упомянутые в п. 1), из которых 32 будут регулярными и 5 нерегулярными.
У 6 из 37 решений сумма вершин равна 26, а именно:
10 | 6 | 2 | 3 | 1 | 4 | 7 | 9 | 5 | 12 | 11 | 8 |
9 | 7 | 1 | 4 | 3 | 2 | 6 | 11 | 5 | 10 | 12 | 8 |
5 | 4 | 6 | 8 | 2 | 1 | 9 | 12 | 3 | 11 | 7 | 10 |
5 | 2 | 7 | 8 | 1 | 3 | 11 | 10 | 4 | 12 | 6 | 9 |
10 | 3 | 1 | 4 | 2 | 6 | 9 | 8 | 7 | 12 | 11 | 5 |
8 | 5 | 3 | 1 | 2 | 7 | 10 | 4 | 11 | 9 | 12 | 6 |