Шрифт:
473. Если мы уберем из комплекта четыре костяшки 7—6, 5—4, 3—2, 1—0, то из оставшихся костяшек можно будет составить правильную последовательность. Подойдут также любые другие комбинации этих чисел; мы могли бы, например, убрать 7—0, 6—1, 5—2 и 4—3. Общее правило состоит в том, что из комплекта домино, заканчивающегося дублем нечетного числа, мы должны убрать костяшки, которые содержат в совокупности все числа от пустышки до числа, на две единицы меньшего самого большого числа в нашем наборе.
474. На рисунке показано, как можно составить из 28 костяшек два квадрата, у которых сумма очков вдоль любой из сторон равна 22. Если сумма равна 22, то сумма углов должна равняться 8; если 23, то 16; если 24, то 24; если 25, то 32; если 26, то 40. Сумма не может быть меньше 22 или больше 26.
475. На рисунке показано, как можно составить 7 столбиков из 28 костяшек.
476. На рисунке показано, как можно составить из 28 костяшек прямоугольник, у которого сумма очков в каждом столбце равна 24, а в каждой строке 21.
477. Расположите второй столбик (на нашем рисунке) под первым, а третий под вторым (мы разделили один столбик на три части для удобства печати), и вы получите искомое решение.
478. Существует 126 760 различных способов, которыми можно расположить 15 костяшек в одну линию, если различать два направления.
479. Наименьшее возможное число равно 36 спичкам. Мы можем составить треугольник и квадрат из 12 и 24 спичек, треугольник и пятиугольник — из 6 и 30 спичек, треугольник и шестиугольник — из 6 и 30 спичек, квадрат и пятиугольник — из 16 и 20 спичек, квадрат и шестиугольник — из 12 и 24 спичек, а пятиугольник и шестиугольник — из 30 и 6 спичек. Эти пары чисел можно варьировать во всех случаях, за исключением четвертого и последнего. Общее число спичек не может быть меньше 36. Для треугольника и шестиугольника нужно взять число спичек, делящееся на 3; на квадрат и шестиугольник идет четное число спичек. Следовательно, искомое число должно находиться среди чисел, делящихся на 6, таких, как 12, 18, 24, 30, 36. но меньше чем из 36 спичек нельзя сложить пятиугольник и шестиугольник.
480. Если загородка имеет вид прямоугольника, то его площадь будет тем больше, чем ближе он к квадрату. Но самая большая площадь получается, когда жерди расположены в виде правильного многоугольника, а если это можно сделать несколькими способами, то максимальной будет площадь у того многоугольника, стороны которого состоят всего из одной жерди. Так, в приведенном ранее примере площадь шестиугольника была больше площади треугольника. Изображенный на рисунке правильный двенадцатиугольник ограничивает наибольшую (в случае 12 жердей) площадь, достаточную для примерно 11 1/5 овцы. Одиннадцатью жердями можно огородить участок, достаточный только для примерно 9
481. На рисунке показано, как 13 и 7 спичками можно огородить два участка, причем площадь одного из них в 3 раза больше второго, поскольку меньший содержит ровно 5 маленьких треугольников, а больший 15.
Есть и другие решения.
482. На рисунке показано одно из четырех решений данной головоломки с 11 (нечетным числом) спичками. Если вы сначала окружите какой-нибудь внешний ряд вроде A, то затем сможете окружить в любом случае квадрат Bи завершить решение, затратив всего 11 спичек.
483. Следует передвинуть вторую I в VII так, чтобы получился знак квадратного корня. Корень квадратный из 1 равен, разумеется, 1, следовательно, и вся получившаяся дробь равна 1.
484. Передвиньте две сигареты, образующие букву L, и поместите их так, как показано на рисунке. Мы имеем корень квадратный из 1 минус 1 (то есть 1—1), что равно, очевидно, 0. Во втором случае мы можем сдвинуть те же сигареты, поместив одну из них рядом с V, а другую рядом со второй I так, чтобы получилось слово NIL (ничто).
485. Расположите 12 спичек, как показано на рисунке справа; они и ограничат 5 квадратов. Конечно, один из них (отмеченный стрелкой) очень мал, но в условии не было ограничений на размеры квадратов.
486. Вы должны спрятать одну спичку внутри коробка, как показано на рисунке пунктирной линией, причем ее головка должна только-только зайти за край внутренней части коробка. Закрывая коробок, вы проталкиваете эту спичку вперед ногтем большого пальца (что можно, потренировавшись, делать незаметно), и она падает на свое место. Разумеется, ни одна из первоначально показанных спичек не перевернется, поскольку это невозможно, но никто никогда не пересчитывает спички.
487. На рисунке показано, как можно ограничить две фигуры 7 и 13 спичками соответственно, чтобы при этом площадь одной из них была ровно в 3 раза больше площади другой. Пунктирные линии показывают, что одна фигура составлена из 2 квадратов и равностороннего треугольника, а другая — из 6 таких же квадратов и 3 треугольников. Двенадцать горизонтальных и вертикальных спичек остались на месте.
488. На рисунке приведен простой ответ. От нас не требовалось, чтобы фигура была плоской или чтобы она была образована 9 спичками. Мы изобразили (в перспективе) куб (правильную фигуру с шестью сторонами).