Вход/Регистрация
Prolog
вернуться

Неизвестно

Шрифт:

расширитьвсе( _, [ ], [Д | ДД], [Д | ДД], нет, _ ).

% По крайней мере одно дерево должно вырасти

расширитьвсе( П, [Д | ДД], ДД1, Пд1, ЕстьРеш, Реш) :-

расширить ( П, Д, Д1, ЕстьРеш1, Реш),

( ЕстьРеш 1= да, ЕстьРеш = да;

ЕстьРеш1 = нет, !,

расширитьвсе( П, ДД, [Д1 | ДД1], Пд1, ЕстьРеш, Реш));

расширитьвсе( П, ДД, ДД1, Пд1, ЕстьРеш, Реш ).

Рис. 11. 13. Реализация поиска в ширину с использованием

древовидного представления множества путей-кандидатов.

Мы разработали эту более сложную реализацию поиска в ширину не только для того, чтобы получать программу более экономичную по сравнению с предыдущей версией, но также и потому, что такое решение задачи может послужить хорошим стартом для перехода к усложненным программам поиска, управляемым эвристиками, таким как программа поиска с предпочтением из гл. 12.

Упражнения

11. 5. Перепишите программу поиска в ширину рис. 11.10, используя разностное представление для списка путей-кандидатов и покажите, что в результате получится программа, приведенная на рис. 11.11. Зачем в программу рис. 11.11 включена цель

Пути \== Z

Проверьте, что случится при поиске в пространстве состояний рис. 11.9, если эту цель опустить. Различие в выполнении программы, возникнет только при попытке найти новые решения в ситуации, когда не осталось больше ни одного решения.

11. 6. Как программы настоящего раздела можно использовать для поиска, начинающегося от стартового множества вершин, вместо одной стартовой вершины?

Посмотреть ответ

11. 7. Как программы этой главы можно использовать для поиска в обратном направлении, т.е. от целевой вершины к стартовой вершине (или к одной из стартовых вершин, если их несколько). Указание: переопределите отношение после. В каких ситуациях обратный поиск будет иметь преимущества перед прямым поиском?

11. 8. Иногда выгодно сделать поиск двунаправленным, т. е. продвигаться одновременно с двух сторон от стартовой и целевой вершин. Поиск заканчивается, когда оба пути "встречаются". Определите пространство поиска (отношение после) и целевое отношение для заданного графа таким образом, чтобы наши процедуры поиска в действительности выполняли двунаправленный поиск.

11. 9. Проведите эксперименты с различными методами поиска применительно к задаче планирования в "мире кубиков".

Назад | Содержание | Вперёд

Назад | Содержание | Вперёд

11. 4. Замечания относительно поиска в графах, оптимальности к сложности

Сейчас уместно сделать ряд замечаний относительно программ поиска, разработанных к настоящему моменту: во-первых, о поиске в графах, во-вторых, об оптимальности полученных решений и, в-третьих, о сложности поиска.

Приведенные примеры могли создать ложное впечатление, что наши программы поиска в ширину способны работать только в пространствах состояний, являющихся деревьями, а не графами общего вида. На самом деле, тот факт, что в одной из версий множество путей-кандидатов представлялось деревом, совсем не означает, что и само пространство состояний должно было быть деревом. Когда поиск проводится в графе, граф фактически разворачивается в дерево, причем некоторые пути, возможно, дублируются в разных частях этого дерева (см. рис. 11.14).

Наши программы поиска в ширину порождают решающие пути один за другим в порядке увеличения их

Рис. 11. 14. (а) Пространство состояний; а - стартовая вершина.

(b) Дерево всех возможных ациклических путей, ведущих из а,

порожденное программой поиска в ширину.

длин - самые короткие решения идут первыми. Это является важным обстоятельством, если нам необходима оптимальность (в отношении длины решения). Стратегия поиска в ширину гарантирует получение кратчайшего решения первым. Разумеется, это неверно для поиска в глубину.

Наши программы, однако, не учитывают стоимости, приписанные дугам в пространстве состояний. Если критерием оптимальности является минимум стоимости решающего пути (а не его длина), то в этом случае поиска в ширину недостаточно. Поиск с предпочтением из гл. 12 будет направлен на оптимизацию стоимости.

Еще одна типичная проблема, связанная с задачей поиска, - это проблема комбинаторной сложности. Для нетривиальных предметных областей число альтернатив столь велико, что проблема сложности часто принимает критический характер. Легко понять, почему это происходит: если каждая вершина имеет b преемников, то число путей длины l, ведущих из стартовой вершины, равно bl ( в предположении, что циклов нет). Таким образом, вместе с увеличением длин путей наблюдается экспоненциальный рост объема множества путей-кандидатов, что приводит к ситуации, называемой комбинаторным взрывом. Стратегии поиска в глубину и ширину недостаточно "умны" для борьбы с такой степенью комбинаторной сложности: отсутствие селективности приводит к тому, что все пути рассматриваются как одинаково перспективные.

  • Читать дальше
  • 1
  • ...
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: