Вход/Регистрация
Prolog
вернуться

Неизвестно

Шрифт:

удалить( Y, Dy, Dy1), % Выбор Y-координаты

U is X-Y % Соответствующая диагональ вверх

удалить( U, Du, Du1), % Ее удаление

V is X+Y % Соответствующая диагональ вниз

удалить( V, Dv, Dv1), % Ее удаление

реш( СписY, Dх1, Dy1, Du1, Dv1).

% Выбор из оставшихся значений

удалить( А, [А | Список], Список).

удалить(A, [В | Список ], [В | Список1 ] ) :-

удалить( А, Список, Список1).

Рис. 4. 11. Программа 3 для задачи о восьми ферзях.

задачи о восьми ферзях.

Процедура реш универсальна в том смысле, что ее можно использовать для решения задачи об N ферзях (на доске размером N х N). Нужно только правильно задеть области Dx, Dy и т.д.

Удобно автоматизировать получение этих областей. Для этого нам потребуется процедура

генератор( Nl, N2, Список)

которая для двух заданных целых чисел Nl и N2 порождает список

Список = [Nl, Nl + 1, Nl + 2, ..., N2 - 1, N2]

Вот она:

генератор( N, N, [N]).

генератор( Nl, N2, [Nl | Список]) :-

Nl < N2,

М is Nl + 1,

генератор( М, N2, Список).

Главную процедуру решение нужно соответствующим образом обобщить:

решение( N, S)

где N - это размер доски, а S - решение, представляемое в виде списка Y-координат N ферзей. Вот обобщенное отношение решение:

решение( N, S) :-

генератор( 1, N, Dxy),

Nu1 is 1 - N, Nu2 is N - 1,

генератор( Nu1, Nu2, Du),

Nv2 is N + N,

генератор( 2, Nv2, Dv),

реш( S, Dxy, Dxy, Du, Dv).

Например, решение задачи о 12 ферзях будет получено с помощью:

?- решение( 12, S).

S = [1, 3, 5, 8, 10, 12, 6, 11, 2, 7, 9, 4]

4. 5. 4. Заключительные замечания

Три решения задачи о восьми ферзях показывают, как к одной и той же задаче можно применять различные подходы. Мы варьировали также и представление данных. В одних случаях это представление было более экономным, в других - более наглядным и, до некоторой степени, избыточным. К недостаткам более экономного представления можно отнести то, что какая-то информация всякий раз, когда она требовалась, должна была перевычисляться.

В некоторых случаях основным шагом к решению было обобщение задачи. Как ни парадоксально, но при рассмотрении более общей задачи решение оказывалось проще сформулировать. Принцип такого обобщения - стандартный прием программирования, и его можно часто применять.

Из всех трех программ третья лучше всего показывает, как подходить к общей задаче построения структуры из заданного множества элементов при наличии ограничений.

Возникает естественный вопрос: " Какая из трех программ наиболее эффективна?" В этом отношение программа 2 значительно хуже двух других, а эти последние - одинаковы. Причина в том, что основанная на перестановках программа 2 строит все перестановки, тогда как две другие программы способны отбросить плохую перестановку не дожидаясь, пока она будет полностью построена. Программа 3 наиболее эффективна. Она избегает некоторых арифметических вычислений, результаты которых уже сразу заложены в избыточное представление доски, используемое этой программой.

Упражнение

4. 7. Пусть поля доски представлены парами своих координат в виде X/Y, где как X, так и Y принимают значения от 1 до 8.

(а) Определите отношение ходконя( Поле1, Поле2), соответствующее ходу коня на шахматной доске. Считайте, что Поле1 имеет всегда конкретизированные координаты, в то время, как координаты поля Поле2 могут и не быть конкретизированы. Например:

  • Читать дальше
  • 1
  • ...
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: