Вход/Регистрация
Язык программирования Python
вернуться

Сузи Роман Арвиевич

Шрифт:

[-0.52573111 0.85065081]]

>>> print «Проверка:", dot(a, v[0]) - v[0] * lmd[0]

Проверка: [ -4.44089210e–16 2.22044605e–16]

Проверка показывает, что тождество выполняется с достаточно большой точностью (числа совсем маленькие, практически нули): собственные числа и векторы найдены верно.

Модуль RandomArray

В этом модуле собраны функции для генерации массивов случайных чисел различных распределений и свойств. Их можно применять для математического моделирования.

Функция RandomArray.random создает массивы из псевдослучайных чисел, равномерно распределенных в интервале (0, 1):

Листинг

>>> import RandomArray

>>> print RandomArray.random(10) # массив из 10 псевдослучайных чисел

[ 0.28374212 0.19260929 0.07045474 0.30547682 0.10842083 0.14049676

0.01347435 0.37043894 0.47362471 0.37673479]

>>> print RandomArray.random([3,3]) # массив 3x3 из псевдослучайных чисел

[[ 0.53493741 0.44636754 0.20466961]

[ 0.8911635 0.03570878 0.00965272]

[ 0.78490953 0.20674807 0.23657821]]

Функция RandomArray.randint для получения массива равномерно распределенных чисел из заданного интервала и заданной формы:

Листинг

>>> print RandomArray.randint(1, 10, [10])

[8 1 9 9 7 5 2 5 3 2]

>>> print RandomArray.randint(1, 10, [10])

[2 2 5 5 7 7 3 4 3 7]

Можно получать и случайные перестановки с помощью RandomArray.permutation:

Листинг

>>> print RandomArray.permutation(6)

[4 0 1 3 2 5]

>>> print RandomArray.permutation(6)

[1 2 0 3 5 4]

Доступны и другие распределения для получения массива нормально распределенных величин с заданным средним и стандартным отклонением:

Листинг

>>> print RandomArray.normal(0, 1, 30)

[-1.0944078 1.24862444 0.20415567–0.74283403 0.72461408–0.57834256

0.30957144 0.8682853 1.10942173–0.39661118 1.33383882 1.54818618

0.18814971 0.89728773–0.86146659 0.0184834 -1.46222591–0.78427434

1.09295738–1.09731364 1.34913492–0.75001568–0.11239344 2.73692131

— 0.19881676–0.49245331 1.54091263–1.81212211 0.46522358–0.08338884]

Следующая таблица приводит функции для других распределений:

Функция и ее аргументы Описание

F(dfn, dfd, shape=[]) F–распределение

beta(a, b, shape=[]) Бета–распределение

binomial(trials, p, shape=[]) Биномиальное распределение

chi_square(df, shape=[]) Распределение хи–квадрат

exponential(mean, shape=[]) Экспоненциальное распределение

gamma(a, r, shape=[]) Гамма–распределение

multivariate_normal(mean, cov, shape=[]) Многомерное нормальное распределение

negative_binomial(trials, p, shape=[]) Негативное биномиальное

noncentral_F(dfn, dfd, nconc, shape=[]) Нецентральное F–распределение

noncentral_chi_square(df, nconc, shape=[]) Нецентральное хи–квадрат распределение

normal(mean, std, shape=[]) Нормальное распределение

permutation(n) Случайная перестановка

poisson(mean, shape=[]) Пуассоновское распределение

randint(min, max=None, shape=[]) Случайное целое

random(shape=[]) Равномерное распределение на интервале (0, 1)

random_integers(max, min=1, shape=[]) Случайное целое

standard_normal(shape=[]) Стандартное нормальное распределение

uniform(min, max, shape=[]) Равномерное распределение

Заключение

В этой лекции рассматривался набор модулей для численных вычислений. Модуль Numeric определяет тип многомерный массив и множество функций для работы с массивами. Также были представлены модули для линейной алгебры и моделирования последовательностей случайных чисел различных распределений.

6. Лекция: Обработка текстов. Регулярные выражения. Unicode.

В этой лекции дается краткое представление о возможностях языка Python по обработке текстовой информации. Рассмотрены синтаксис и семантика регулярных выражений, а также некоторые вопросы использования Unicode.

Под обработкой текстов понимается анализ, преобразование, поиск, порождение текстовой информации. По большей части работа с естественными текстами не будет глубже, чем это возможно без систем искусственного интеллекта. Кроме того, здесь предполагается опустить рассмотрение обработки текстов посредством текстовых процессоров и редакторов, хотя некоторые из них (например, Cooledit) предоставляют возможность писать макрокоманды на Python.

  • Читать дальше
  • 1
  • ...
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: