Вход/Регистрация
Обзор ядерных аварий с возникновением СЦР (LA-13638)
вернуться

Фролов В. В.

Шрифт:

Хотя и нельзя оставлять без внимания твердые делящиеся материалы, интересы безопасности могут сконцентрироваться главным образом на изучении поведения растворов, для которых вопрос обеспечения ядерной безопасности более труден. В то время как нынешняя практика основана на средствах ядерной безопасности, встроенных в технологическое оборудование, чрезвычайно трудно достигнуть полной независимости от административного контроля. Исследования механизмов реальных и моделированных аварий дают понимание методов, могущих смягчить последствия маловероятной аварии, коль скоро она произойдет. Один из таких методов состоит в том, чтобы ввести соответствующие сильные нейтронные источники внутрь аппарата, который по необходимости имеет опасную геометрию и получает раствор обычно с концентрациями недостаточными, чтобы поддерживать критичность, и не имеет значительного собственного источника нейтронов. Эксперименты CRAC 5 ясно демонстрируют эффективность такого источника для ограничения высоты первых пиков вспышки мощности.

В дополнение к пониманию, полученному в результате изучения технологических аварий и разгонов в реакторах и в критических сборках, происходивших с участием растворов, большое количество информации доставляет серия экспериментов по изучению контролируемых всплесков мощности в растворах. Представляют интерес проведенные в США серии экспериментов KEWB 6, 89, 90, 91 (кинетические эксперименты в кипящих реакторах), в то время как эксперименты CRAC 5, проводимые во Франции Отделом изучения критичности Комиссариата по атомной энергии (Service d'Etudes de Criticite of the Commissariat a l'Energie Atomique), непосредственно используются для оценок последствий аварий. Эти программы, в которых используются растворы высокообогащенного урана, дополняются серией измерений, проведенных в Лос-Аламосской национальной лаборатории с помощью сборки SHEBA 92. Эта сборка заполнена раствором обогащенного до 5 % урана, который дает информацию о мощности дозы при всплесках мощности в системах с низким обогащением урана. Анализ результатов экспериментов KEWB 6 и CRAC 5 привел к разработке относительно простых компьютерных программ, которые хорошо описывают переходное поведение на ранней стадии и в качестве механизмов гашения принимают тепловое расширение и образование газа вследствие радиолиза.

Параметры СЦР в твердой активной зоне с замедлителем изучались по экспериментальным программам SPERT 93, 94, 95 и TRIGA 96, 97, в то время как очень быстрая кинетика переходного процесса в простых металлических системах без замедлителя хорошо понята в результате исследований на критической сборке «Годива» и на подобных реакторах с быстрыми всплесками мощности.

Механизмы гашения, ясно проявившиеся в вышеуказанных экспериментальных исследованиях и прекратившие многие аварийные выбросы мощности, включают в себя тепловое расширение, кипение, эффект Доплера 98 на 238U и образование пузырьков радиолитического газа. Они перечислены здесь не в порядке их важности, и не все они независимы. Вдобавок, в некоторых ситуациях вклад в гашение или прекращение всплеска мощности вносит более чем один механизм; во многих случаях появляются также дополнительные механизмы гашения, когда плотность энергии или температура достигают некоторого порогового значения. Эта проблема имеет разнообразные и многочисленные ответвления, но самый простой и наиболее общий из применимых механизмов используется в энергетической модели 99,100,101, в которой изменение реактивности пропорционально выделяемой энергии деления.

Для специального случая увеличения реактивности на величину k0 можно написать

k(t) = k0 — bE(t), (1)

где E(t) есть энергия деления, выделяемая к моменту времени t, а b — постоянная, характеризующая систему. В таком предположении была составлена программа численного решения кинетических уравнений реактора с использованием цифровых вычислительных машин. Такие программы существуют во многих лабораториях; результаты, приведенные здесь, взяты из программы RTS Лос-Аламосской национальной лаборатории 102,103. Рисунок 63 иллюстрирует серию результатов расчетов для гипотетических систем, в которых прирост k составляет 1,20 в относительно критичности на запаздывающих нейтронах, значение b постоянно, а время жизни нейтронов l изменяется от 10– 8 до 10– 4 секунд. Кривые мощности и реактивности в случае короткоживущих нейтронов характерны для мгновенных резких всплесков мощности в реакторах на быстрых нейтронах. Очень резкие рост и падение мощности называется пиком мощности, а относительно постоянная мощность, следующая за пиком, называется плато. Во время пика реактивность изменяется на 2 k0, то есть она отражает почти мгновенную критичность. Характеристики таких пиков определяются почти полностью мгновенными нейтронами. Кривые для l = 10– 4 (они моделируют раствор или реактор с замедлителем) не обнаруживают отражения почти мгновенной критичности, и не имеется никакого четко определенного плато вслед за пиком. Масштаб времени порядка времени распада более короткого предшественника запаздывающих нейтронов; влиянием этих нейтронов нельзя пренебречь.

Рисунок 64 иллюстрирует аналогичные данные при увеличении реактивности на шаг, равный 1,0 . Развитие во времени реактивности и мощности в этом случае совершенно иное и типично для резких выбросов мощности в критической области с запаздывающими нейтронами. Шкала времени более протяженная, допускающая возможность использования механических приборов для выключения переходного режима, пики выбросов мощности шире, и реактивность теперь пытается отразить почти запаздывающую критичность. Следует заметить, что подразумеваемое предположение об отсутствии в системе тепловых потерь не может быть реализовано на практике. Любая такая потеря энергии имела бы результатом большие значения мощности, чем те, что показаны на рисунке.

Рисунок 63. Модель генерации мощности и энергии в зависимости от времени. Введенная реактивность 1,2 . Время жизни нейтронов 10– 8, 10– 6 и 10– 4 с. Нижний график показывает зависимость реактивности от времени.
Рисунок 64. Модель генерации мощности в зависимости от времени. Введенная реактивность 1,0 . Время жизни нейтронов 10– 8, 10– 6 и 10– 4 с. Нижний график показывает зависимость реактивности от времени.

Некоторые из результатов, показанных на рисунках 63 и 64, можно получить аналитически. Для достаточно больших шагов увеличения реактивности выше критичности на мгновенных нейтронах запаздывающими нейтронами можно пренебречь, и кинетические уравнения можно проинтегрировать и получить полный выход при резком увеличении мощности [7] .

dE/dt = 2kp / b, (2)

где kp — это шаг приращения по отношению к мгновенной критичности.

7

Подобный же результат можно получить для области критичности на запаздывающих нейтронах, но неадиабатическое поведение искажает результат.

Полуширина пика описывается формулой

t1/2 = 3,52 l / kp, (3)

где l — время жизни нейтронов, а максимальная мощность дается формулой

 (4)

Данные, показанные на рисунках 63 и 64, получены в результате интенсивных исследований на экспериментальных системах: реакторах «Годива», KEWB 6 и SPERT и в экспериментах CRAC 5.

Реакторы «Годива I» и «Годива II» представляли собой почти целиком твердые критические металлические сборки из урана (93 % 235U), используемые для установок по облучению. При нескольких центах выше мгновенной критичности контролируемая мгновенная вспышка мощности дала отличную экспериментальную картину, дополняющую кривые на рисунках 63 и 64. Из-за теплового расширения возникает мгновенный отрицательный температурный коэффициент реактивности, около 4,3 X 103 /°C (в зависимости от модели), который непосредственно связан с накоплением энергии деления. Изменение во времени происходит столь быстро, что никакое тепло из системы не теряется. Когда шаг изменения реактивности увеличивается до 4 центов или до 5 центов выше критичности на мгновенных нейтронах, появляются новые эффекты. Мощность растет до такой высокой величины, что тепловое расширение отстает от роста накопления энергии, и простое соотношение между E и kp в уравнении (2) перестает быть справедливым. При еще более высоких шагах изменения реактивности выделение энергии становится пропорциональным квадрату, а затем кубу исходного превышения реактивности. Структурные разрушения от ударных волн начинаются при 10 центах или 11 центах, определяя, таким образом, предел для плановых повторяющихся вспышек.

  • Читать дальше
  • 1
  • ...
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: