Вход/Регистрация
Необыкновенная жизнь обыкновенной капли
вернуться

Волынский Марк Семенович

Шрифт:

Так попеременно вырубая ступени в упорной породе, обгоняя и подтягивая друг друга, непрерывно движутся в единой связке опыт и теория. Общие дифференциаль­ные уравнения гидромеханики — одна из самых высо­ких вершин этого восхождения: с нее далеко видно.

Катаклизмы внутри форсунки

Теперь со знанием дела, слегка подкованные по части гидродинамики, обратимся снова к форсунке: интерес­но, как там работает связка «опыт—теория»? Вблизи горизонтальной оси форсунки, где радиус r мал, скорость вращения жидкости и велика, это диктуется уравнени­ем (2). Велика и кинетическая энергия — слагаемое в законе Бернулли pu2/2. Следовательно, другое слагае­мое— давление Р — мало. Двигаясь все ближе к оси, при r – >0 получаем — согласно уравнениям (2) и (3) — нечто странное: и– > , Р– > —.

Это называется особой точкой решения. Математика начинает «чудить», приводит к противоречию с физи­кой, к невозможному результату: бесконечная скорость, бесконечное, да еще отрицательное давление.

Но часто математический парадокс как бы подает сигнал: здесь не разрыв со здравым смыслом, а разрыв в самой картине явления — ищите резкого изменения формы течения. А происходит вот что: когда давление у самой оси упадет ниже уровня давления среды, воз­дух из атмосферы засосётся внутрь форсунки через соп­ловое отверстие и образуется полость — воздушный вихрь радиуса rm , подобие воронки в ванне при сливе воды. Математическое зеркало, даже искривляясь, как бы продолжает своей кривизной отражать реаль­ность.

Теория центробежной форсунки создавалась у нас на глазах, и многие помнят, как возникла неожиданная, трудность: число уравнений в задаче оказалось меньше числа неизвестных — радиус вихря rm стал «лишним», для него не хватило одного уравнения. Проблема зашла в тупик, поскольку было неясно, как вычислить главную величину — расход жидкости. В уравнении

Тогда Г. Н. Абрамович решил: посмотрим структуру неизвестного, и построил зависимость расхода от радиу­са rm или, что равносильно, от коэффициента c (при постоянном давлении подачи). Обнаружилась характер­ная особенность: при малых rm (толстое колечко) сече­ние выхода хорошо заполнено жидкостью, зато осевая скорость потока мала и их произведение (расход) мало; при больших rm (тонкое колечко) выходное сечение за­полнено плохо, и, хотя скорость велика, расход опять мал. На кривой при каком-то промежуточном значении rm обнаружился четкий максимум: природа как бы сама обращала внимание исследователя на одну особенную точку графика. Интуиция исследователя подсказала Генриху Наумовичу смелый «принцип максимума рас­хода», отбирающий одно-единственное в целом мире ре­шение; из всех возможных вихрей форсунка избирает такой, что расход жидкости получается наибольшим. Этот принцип позволил замкнуть теорию — интуиция заменила недостающее уравнение.

Опыт подтвердил красивую гипотезу в определенном диапазоне режимов. Был достигнут существенный про­гресс. В дальнейшем теория уточнялась и развивалась советскими учеными Л. А. Клячко, В. И. Скобелкиным, В. Б. Тихоновым и другими. Она нашла самое широкое применение в инженерной практике, поскольку позволя­ет просто вычислять расход жидкости и угол распыли­вания. Массовый расход в соответствии с уравнени­ем (5) запишется так:

характеристика форсунки, r и п — соответственно ра­диус и число каналов камеры закручивания.

Геометрическая характеристика оказалась фактором подобия: самые разные форсунки, имеющие одинаковую комбинацию основных размеров А, имеют одинаковые коэффициенты расхода и углы распыливания. Теперь общая картина течения в форсунке выглядит так. По­ток, попадая из широкой камеры закручивания в узкое сопло, ускоряется — работает уравнение сохранения расхода. Убыстряется и вращение, как у фигуриста, мгновенно сложившего на груди до этого раскинутые руки (уравнение сохранения момента количества дви­жения). Давление жидкости, вышедшей в открытое про­странство, должно упасть до атмосферного, центробеж­ное давление — исчезнуть. Но энергия не исчезает. По уравнению Бернулли потенциальная энергия переходит в кинетическую, то есть возрастает скорость истекаю­щей пелены, и она на самом выходе утоньшается. Итак, остроумная догадка о максимуме расхода разрешила трудности и дала законченную теорию явления.

Однако возникает вопрос: как же получилось, что не хватило уравнений и строгую логику пришлось заме­нить гипотезой? Победителей не судят, но если бы пред­положение ученого не оправдалось? Быть может, какой-то фактор выпал из рассмотрения, какие-то связи не были учтены? Вопрос законный, серьезный. Для ответа мобилизуем все ту же испытанную связку «опыт—тео­рия». Вглядимся внимательней в явление, вернувшись опять к форсунке. Но теперь приделаем к ней, продол­жая выходной канал, длинную прозрачную трубку — сопло из плексигласа. Раньше мы видели поток всегда с тыла или на выходе, сейчас можем взглянуть сбоку. Действительно, в профильной проекции обнаружилось нечто новое: у самого входа в сопло из камеры виднеет­ся крутая ступенька (иногда не одна) — резкое падение толщины жидкого колечка; внезапный рост радиуса вихря rm (рис. 10). Сразу появляется информация к размышлению: что за скачок? Где такое бывает? По­ищем аналогии — путь в науке очень полезный. Карто­тека памяти выдает необычный, запомнившийся образ: ведь это гидравлический прыжок, и возникает он дей­ствительно в потоках, сходных с нашим.

Гидравлики подробно изучают течение в открытом русле водослива (например, оросительный канал).

Жидкость там течет под действием силы тяжести — аналог потока с центробежным давлением в форсунке (оно тоже зависит от массы). Интересное это явление — гидравлический прыжок. Плавно ускоряясь, течет под уклон вода в канале по совершенно гладкому дну, уро­вень меняется медленно, равномерно. Но вот, разогнав­шись до какой-то предельной скорости, поток скачком меняет свою высоту, прыгает иногда почти отвесной стенкой, образуя один или несколько горбов-порогов. Потом на уменьшенном уклоне течение снова идет плав­но, но уже на другом уровне. Гидравлический прыжок возникает как раз в сечении, где скорость потока w до­стигает скорости с распространения поверхностных так называемых тяжелых волн *.

* Предположение о равенстве скорости течения жидкости в сопле форсунки скорости распространения тяжелых (центробежных) волн впервые было высказано И. И. Новиковым.

 Из теории волнового дви­жения известна простая формула определения скорости распространения волн: c = gh, здесь g— ускорение под действием силы тяжести, h — высота уровня жид­кости.

  • Читать дальше
  • 1
  • ...
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: