Шрифт:
Очень большие скорости потока, обтекающего орбитальную станцию в условиях разреженной среды и в широком диапазоне температур, открывают перспективы для экспериментаторов в области газовой динамики и тепло обмена. Представляет интерес, например, возможность в условиях невесомости полностью исключить явление передачи тепла свободной конвекцией и экспериментально изучить процессы кипения и конденсации паров различных веществ в условиях невесомости.
При помощи орбитальной станции успешно решается проблема использования солнечной энергии, 90 % которой отражается или поглощается атмосферой Земли. Использованию солнечной радиации для техники и научных исследований большое значение придавал Ф.Жолио-Кюри. В частности, он предлагал использовать энергию Солнца для массового фотосинтеза материалов, содержащих углерод, с помощью других веществ, аналогично тому как это происходит с хлорофиллом зеленых растений.
В принципе такая задача вполне может решаться на борту ОКС, ибо возможности получения солнечной энергии на ней практически почти не ограничены.
ОКС будет испытывать новые типы двигателей для космических кораблей. По мнению специалистов из американского национального комитета по аэронавтике и космическим полетам (NASA), испытания одного из таких типов двигателя, ионного, должны проводиться обязательно в условиях, близких к космическим, так как истечение струи рабочего тела такого двигателя должно происходить в глубокий вакуум. Эксперименты на орбите помогут провести техническую проверку конструкции ионного двигателя и решить целый ряд других важных проблем, например проблему радиосвязи в присутствии струи рабочего тела ионного двигателя. В иностранной печати встречаются также предложения об использовании орбитальной станции в качестве испытательного стенда для жидкостных и пороховых ракетных двигателей, предназначенных для верхних ступеней ракетоносителей [17].
Широко обсуждается вопрос о проверке с помощью орбитальных тел общей теории относительности.
Создание ОКС откроет большие перспективы и перед биологами. Проникнув в космос, они смогут полнее изучить влияние космической среды на живые организмы, в частности воздействие таких факторов, как ионизирующая радиация, невесомость, низкое атмосферное давление, колебания температуры, электромагнитные поля, необычный состав атмосферы. Важно изучить вопросы, связанные с приспособляемостью человека к тем условиям космического полета, которые нельзя устранить. Возможно, что удастся поставить опыты по определению генетических последствий первичной космической радиации и невесомости.
Биологов интересуют также проблемы существования за пределами Земли живых организмов, с которыми непосредственно связаны проблемы происхождения жизни и ее эволюции во Вселенной. Их разрешению помогут исследования в области органической химии, например химический анализ метеоров, спектроскопический анализ органических соединений Земли и других планет, а также исследования микробного содержания верхних слоев атмосферы.
Очень интересна проблема, связанная с изучением загрязнений атмосферы Земли и околоземного пространства различными веществами, вредными для существования жизни на Земле.
Заманчивой задачей является проверка гипотезы Циолковского о том, что в условиях невесомости все организмы, от самых простых до самых сложных, развиваются быстрее, чем в земных условиях. Требуют проверки предположения о положительном влиянии невесомости на некоторые сердечные и психические заболевания.
Все эти гипотезы можно будет подтвердить или отвергнуть лишь при создании длительно существующего на орбите «научно-исследовательского космического института».
НОВЫЕ ВОЗМОЖНОСТИ ДРЕВНЕЙ НАУКИ
Расстояние от Земли до Солнца около 150 млн. км, а до ближайшей к нам звезды — более 30 триллионов км — расстояние, которое даже мысленно представить себе невозможно. Казалось бы, много ли выиграют астрономы, если их обсерватории поднять всего лишь на высоту орбиты космической станции, допустим на 500 или 300 км. Тем не менее выйти за пределы нижних слоев атмосферы — давняя мечта астрономов, служителей едва ли не самой древней из наук.
Дело в том, что атмосфера — надежный и верный щит для жителей Земли — мешает наблюдению небесных тел. Современные астрономические обсерватории с их гигантскими дорогостоящими телескопами — это безвозмездная дань земной атмосфере.
Для наблюдения за планетами и звездами удается использовать лишь небольшие участки электромагнитного спектра (рис. 3) — видимые световые лучи и ультракороткие радиоволны. На схеме видно, что только небольшая часть излучений достигает поверхности Земли. Остальные лучи, например ультрафиолетовые и инфракрасные, в значительной мере поглощаются атмосферой. Визуальному наблюдению небесных тел сильно мешают движение воздушных масс и колебания неравномерно нагретых плотных слоев воздуха, а также рассеивающая и отражательная способность атмосферы.
Теперь представим себе обыкновенный телескоп на высоте нескольких сот километров. Эффект для качества астрономических наблюдений будет необыкновенный: исчезнут все помехи, связанные с атмосферой, резко возрастет длительность наблюдений, которая уже не будет зависеть ни от погоды, ни от движения воздушных масс. Наблюдения окажутся возможными почти во всем спектре электромагнитных излучений. Да и разрешающая способность обычных астрономических приборов за пределами атмосферы заметно повысится. С помощью обычного небольшого телескопа с высоты нескольких сот километров можно будет получить фотоснимки звезд и планет более четкие, чем с Земли с помощью громадного двухсотдюймового телескопа Паломарской обсерватории (США).