Вход/Регистрация
Разработка приложений в среде Linux. Второе издание
вернуться

Троан Эрик В.

Шрифт:

 1: /* cat.с */

 2:

 3: #include <stdio.h>

 4: #include <unistd.h>

 5:

 6: /* Пока есть данные на стандартном входе (fd0), копировать их в

 7: стандартный выход (fd1). Выйти, когда не будет доступных данных. */

 8:

 9: int main(void) {

10: char buf[1024];

11: int len;

12:

13: /* len будет >= 0, пока доступны данные

14: и read успешен */

15: while ((len = read(STDIN_FILENO, buf, sizeof(buf))) > 0) {

16: if (write(1, buf, len) != len) {

17: perror("write");

18: return 1;

19: }

20: }

21:

22: /* len будет <= 0; если len = 0, больше нет

23: доступных данных. Иначе - ошибка. */

24: if (len < 0) {

25: perror("read");

26: return 1;

27: }

28:

29: return 0;

30: }

11.2.6. Сокращение файлов

Хотя обычные файлы автоматически растут при записи данных в их конец, у системы нет способа автоматически усекать файлы, когда данные в конце не нужны. К тому же, как система может узнать, что данные стали излишними? Это находится в компетенции процесса — извещать систему о том, когда файл можно сократить до определенной точки.

#include <unistd.h>

int truncate(const char *pathname, size_t length);

int ftruncate(int fd, size_t length);

Размер файла устанавливается равным

length
, и все данные, находящиеся за новым концом файла, теряются.

Если

length
больше текущего размера файла, то файл увеличивается до заданного размера (по возможности используя "дырки"), хотя такое поведение и не гарантируется POSIX, поэтому на него нельзя полагаться при написании переносимых программ.

11.2.7. Синхронизация файлов

Когда программа пишет данные в файл, обычно они сохраняются в кэше ядра до тех пор, пока оно не выполнит запись на физический носитель (такой как жесткий диск), но ядро возвращает управление программе сразу после того, как данные скопируются в кэш. Это обеспечивает значительный рост производительности, так как позволяет ядру определять порядок записи на диск и объединять несколько записей в одну блочную операцию. Однако в случае системного сбоя у такой технологии есть два существенных недостатка, которые могут оказаться важными. Например, приложение, которое предполагает, что данные сохранены в базе данных прежде, чем был сохранен индекс для этих данных, может не справиться со сбоем, явившимся результатом того, что индекс был просто обновлен.

Есть несколько механизмов, которые может использовать приложение, чтобы дождаться записи данных на физический носитель. Флаг

O_SYNC
, описанный ранее в этой главе, при каждой операции записи в файл вызывает блокирование вызывающего процесса до тех пор, пока носитель не будет действительно обновлен. Хотя это, конечно, работает, все же такой подход не является достаточно аккуратным. Обычно приложения не нуждаются в том, чтобы все операции были синхронизированы, гораздо чаще они нуждаются в том, чтобы гарантировать, что некий набор операций завершился перед тем, как может быть начат другой набор операций. Системные вызовы
fsync
и
fdatasync
обеспечивают такую семантику.

#include <unistd.h>

int fsync(int fd);

int fdatasync(int fd);

Оба системных вызова приостанавливают приложение до тех пор, пока в файл

fd
не будут записаны все данные,
fsync
также ожидает обновления информации в inode файла, подобной времени доступа (информация inode для файлов перечислена в табл. 11.3). Однако ни один из этих вызовов не гарантирует записи на неразрушимое устройство хранения. Современные дисковые приводы имеют большие собственные кэши, поэтому сбой питания может привести к тому, что некоторые данные, сохраненные в кэше, будут потеряны.

11.2.8. Прочие операции

Файловая модель Linux достаточно хорошо поддерживает стандартизацию большинства файловых операций через обобщенные функции наподобие

read
и
write
(например, запись в программный канал выполняется так же, как запись в файл на диске). Однако некоторые устройства поддерживают операции, которые плохо моделируются такой абстракцией. Например, терминальные устройства, представленные как устройства символьные, нуждаются в представлении метода изменения скорости терминала, и приводы CD-ROM, представленные как блочные устройства, нуждаются в том, чтобы знать, кода они должны воспроизводить аудиодорожки, чтобы помочь увеличить производительность работы программистов.

  • Читать дальше
  • 1
  • ...
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: