Шрифт:
Рассмотрим последовательность расстояний в парадоксе Зенона: 1/2 метра, 1/4 метра, 1/8 метра, 1/16 метра и так далее (градация все уменьшается). Эта последовательность обладает бесконечным числом ограничений, поэтому вычислить ее сумму путем простого сложения не получится. Однако можно заметить, что хотя число ограничений бесконечно, ограничения эти в своей последовательности все уменьшаются и уменьшаются. Может, существует конечное равновесие между бесконечным потоком ограничений и их бесконечно уменьшающимся размером? Этот вопрос как раз относится к тому самому типу вопросов, на которые возможно ответить, прибегнув к понятиям последовательностей, рядов и пределов. Чтобы увидеть его в действии, не нужно пытаться подсчитать, как далеко зайдет ученик после всей бесконечности Зеноновых интервалов, нужно каждый раз рассматривать по интервалу. Вот расстояния, которые прошел ученик после первых нескольких интервалов:
• После первого интервала: 1/2 метра
• После второго интервала: 1/2 метра + 1/4 метра = 3/4 метра
• После третьего интервала: 1/2 метра + 1/4 метра + 1/8 метра = 7/8 метра
• После четвертого интервала: 1/2 метра + 1/4 метра + 1/8 метра + 1/16 метра = 15/16 метра
Таково распределение чисел: 1/2 метра, 3/4 метра, 7/8 метра, 15/16 метра… Знаменатель — степень двойки, числитель на одну часть меньше знаменателя. Глядя на таким образом распределившиеся числа, можно вычислить: через 10 интервалов ученик пройдет 1 023/1 024 метра; через 20 интервалов — 1 048 575/1 048 576 метра и так далее. Из распределения чисел ясно, что Зенон прав — чем больше интервалов, тем больше получаемая сумма расстояний. Однако Зенон не прав, когда говорит, что сумма стремится к бесконечности. Наоборот, числа приближаются к 1; математики сказали бы, что 1 метр является пределом данной последовательности расстояний. Что имеет смысл, потому что хотя Зенон и раздробил путь ученика на бесконечное количество интервалов, он, в конце концов, должен пройти всего 1 метр.
Парадокс Зенона о количестве времени, которое потребуется на то, чтобы пройти путь, но никак не о расстоянии. Если ученик будет шагать в строгом соответствии с интервалами Зенона, ему, конечно же, придется попотеть (не говоря уже о том, что он должен будет совершать крошечные, меньше миллиметра шаги)! Однако если он станет передвигаться с постоянной скоростью, не соблюдая воображаемые Зеноновы интервалы — а почему бы и нет? — время, которое потребуется на преодоление каждого из интервалов, будет пропорционально расстоянию, пройденному за этот интервал, а поскольку в целом отрезок пути конечен, конечно и общее время и — к счастью для всех нас — движение все-таки возможно.
Хотя современная концепция пределов была разработана намного позже того времени, в котором жил Зенон, да и не только он, а и Бернулли — это произошло в XIX в.{94} — именно она составляет суть математического анализа, и именно таковы по сути своей попытки Якоба Бернулли исследовать связь между вероятностями и наблюдением. В частности, Бернулли изучил, что происходит в пределе сколь угодно большого числа многократных наблюдений. Подбросьте сбалансированную монету 10 раз: у вас может выпасть 7 орлов. Однако если вы подбросите монету сто тысяч миллиардов раз, у вас, скорее всего, получится половина на половину. В 1940-х гг. южноафриканский математик Джон Керрич решил проверить это на практике, подбрасывая монету множество раз, приближавшееся к ста тысячам миллиардов — на самом деле 10 тыс. — и записывая результат каждого броска{95}. Вы можете подумать: этот математик мог бы заняться чем-нибудь более полезным, однако он в то время был военнопленным — его угораздило оказаться в Копенгагене как раз тогда, когда немцы в апреле 1940 г. захватили Данию. Согласно полученным данным, после 100 бросков орлы получались только в 44%, однако к тому времени, когда было сделано 10 тыс. бросков, цифра оказалась гораздо ближе к половине: 50,67%. Как выразить этот феномен количественно? Ответ на этот вопрос дал Бернулли.
Согласно свидетельствам историка и философа Иэна Хэкинга, работа Бернулли «явилась для общественности ярким предвестником всего того, что нам известно о ней теперь; ее математическая глубина, широчайшее практическое применение, двойственность и приглашение к философским размышлениям. Вероятность проявилась во всей своей полноте». Если же привести более скромные слова Бернулли, то его исследование оказалось «не лишенным новизны и в то же время… невероятной практичности». Бернулли писал, что это стоило ему «огромных усилий»{96}. Он работал над своим трудом двадцать лет.
Важнейшим достижением за все двадцать лет непрерывной работы Якоб Бернулли считал «золотую теорему». Ее современные версии, разнящиеся техническими деталями, известны под разными названиями: теорема Бернулли, закон больших чисел, обычный закон больших чисел. Фраза «закон больших чисел» фигурирует потому, что, как мы уже говорили, теорема Бернулли связана со способом, с помощью которого результаты отражают неявные вероятности в процессе многократных наблюдений. Однако мы будем придерживаться терминологии Бернулли и станем называть его теорему «золотой теоремой», потому как будем иметь дело с ее первоначальной версией{97}.
Хотя Бернулли интересовало практическое применение, в некоторых его излюбленных примерах фигурирует предмет, в большинстве домов отсутствующий: заполненный разноцветными голышами сосуд. Согласно одной постановке задачи, Бернулли представил сосуд с 3 тыс. белых голышей и 2 тыс. черных, то есть в процентном соотношении как 60% и 40% соответственно. Вы наугад несколько раз вынимаете голыши из сосуда, но «с заменой», то есть перед тем, как вынуть следующий голыш, заменяете уже вынутый, чтобы сохранять соотношение 3 к 2. Таким образом, заранее известно, каковы шансы вынуть белый голыш: 3 из 5 или 60%. В связи с этим экспериментом основной вопрос Бернулли звучит так: насколько строго количество белых голышей будет держаться в рамках 60% и с какой вероятностью?