Шрифт:
Однако и это еще не главное. Допустим, на самолете можно устроить такую мощную биологическую защиту, которая сделает безопасным для экипажа и пассажиров излучение атомной силовой установки. Правда, полной изоляции достигнуть трудно — слишком много должна весить подобная экранировка. Но не исключено, что в будущем вес ее удастся уменьшить. В этом направлении ведутся интенсивные исследования 11*. В частности, подыскиваются такие легкие материалы, которые обладают «избирательной» экранизирующей способностью, то есть поглощают лишь один какой-либо вид опасного излучения. Тогда вся экранировка должна состоять из нескольких слоев различных легких материалов, обладающих такими свойствами. Вес этой экранировки удастся, вероятно, значительно снизить по сравнению с существующими защитными устройствами. Так или иначе, тех, кто будет находиться на борту атомного самолета, вероятно, можно защитить от радиоактивного излучения. Значит ли это, что удастся создать и атомные пассажирские самолеты?
Нет, не значит, ибо главное препятствие на этом пути связано вовсе не с судьбой экипажа и пассажиров, а с опасностью катастрофы, о которой говорилось выше 12*.
Одна только такая опасность делает практически невозможным использование атомных линейных пассажирских самолетов. Для того чтобы преодолеть эту опасность, нужно сначала создать атомные двигатели, работа которых не была бы связана с образованием в них «радиоактивной сажи», смертельно опасной в случае катастрофы. Пока еще не ясно, как это возможно и возможно ли вообще. Разве только на помощь придут термоядерные двигатели, в которых вместо расщепления атомов происходит их слияние с образованием атомов более сложного вида, как это происходит, например, при взрыве водородной бомбы. Однако эта проблема не решена еще даже теоретически, хотя ею усиленно занимаются многие ученые.
В качестве одного из возможных путей разрешения проблемы создания атомных пассажирских самолетов иногда предлагается использование атомных «тягачей». В этом случае предполагается, что на самом пассажирском самолете будут установлены не атомные, а обычные двигатели. Они предназначаются лишь для работы в течение короткого времени, например при взлете и наборе высоты, а также при посадке. Поэтому на самолете будет находиться очень небольшой запас топлива. Весь остальной полет такой пассажирский самолет будет совершать на буксире у атомного, служащего своеобразным тягачом. Атомный тягач будет летать без экипажа и управляться на расстоянии — возможно, летчиком одного из буксируемых пассажирских самолетов. На буксире будет находиться, как правило, сразу несколько пассажирских (а может быть, и грузовых) самолетов. При такой системе опасность излучения для экипажа и пассажиров буксируемых самолетов становится незначительной. Однако угроза катастрофы атомного тягача по-прежнему сохраняется, хотя его маршрут можно построить таким образом, чтобы он пролегал в стороне от крупных населенных центров страны.
Кстати, в этой связи надо упомянуть и еще об одной идее, которая может найти применение в будущем. За последние годы все более широкое применение находит новый метод буксирования морских и речных судов, при котором тягач превращается в «толкача». Выгода заключается в том, что буксируемому судну не приходится двигаться в струе, отбрасываемой винтом тягача. Это значительно уменьшает потребную мощность буксирования. Кроме того, при этом повышается маневренность всего каравана. Вот такие же «толкачи» и предполагается использовать в воздушном флоте.
Нужда в «толкаче» возникает потому, что мощность, необходимая для взлета и набора высоты, намного превышает мощность установившегося горизонтального полета. Вот почему самолету как бы требуются два различных двигателя: один, гораздоболее мощный, — для взлета, другой — для остального полета. Конечно, менять двигатели в полете невозможно, зато можно воспользоваться услугами дополнительного двигателя при взлете. Для этого и предполагается использовать «толкач».
11*Об этом сообщает, например, журнал «Эроплейн», 1956 г.
12*См. главу VI.
Самолетный «толкач». Вверху — взлет и набор высоты, внизу — отделение и возвращение «толкача» на аэродром.
В качестве «толкача» может служить специально спроектированный самолет с очень мощными турбореактивными и турбовинтовыми двигателями и весьма небольшим запасом топлива — ведь полет «толкача» длится очень недолго.
По существу, такой «толкач» будет представлять собой летающую силовую установку. Он взлетит, толкая перед собой самолет, наберет необходимую высоту, а потом отцепится и совершит посадку на своем аэродроме. Самолет же, поднятый в воздух, будет продолжать полет.
Но вернемся к атомной авиации. С ней связано еще одно интересное и несколько неожиданное предложение. Неожиданное потому, что оно представляет собой, на первый взгляд, возврат к давно прошедшему этапу борьбы за покорение воздушного океана. Речь идет об использовании дирижаблей, казалось навсегда ушедших со сцены.
Секрет такого возврата прост. С помощью атомной установки дирижабль способен совершать полет любой, практически неограниченной дальности. Скорость его может быть, конечно, большей, чем у самых быстроходных океанских кораблей. Атомный дирижабль, кроме того, может предоставить пассажирам не меньший, если не больший комфорт, чем огромные океанские лайнеры. В то же время особенности дирижабля позволяют устранить значительную часть тех опасностей, с которыми связано радиоактивное излучение атомной установки.
Представьте себе такой атомный дирижабль. Металлическая сигара длиной метров 300, высотой побольше некоторых московских высотных зданий. Грани сигары, изготовленной из алюминиевого сплава, обработаны методом глубокого анодирования. Они имеют красивый голубоватый оттенок, причем, кажется, каждая грань — свой, в зависимости от освещения. Эта обработка придает особую поверхностную твердость оболочке дирижабля, наполненной гелием. В передней части, под сигарой, расположены пассажирские помещения, напоминающие снаружи океанский корабль. В них могут разместиться почти 2000 пассажиров. Сзади под сигарой расположены два пояса гигантских многолопастных воздушных винтов, приводимых в движение газовыми турбинами. Эти турбины работают на том же гелии, который заполняет оболочку, и развивают каждая мощность 100 тысяч лошадиных сил. Так как всего двигателей на дирижабле 12, то общая мощность его силовой установки составляет 1200 тысяч лошадиных сил.