Шрифт:
Чтобы самолет летел с большей скоростью, его двигатель, как мы уже знаем, должен развивать большую тягу, а сам самолет обладать меньшим лобовым сопротивлением. Реактивные двигатели позволили решить первую часть задачи — они развивают огромную тягу при малом собственном весе. Решение второй части задачи преобразило внешний вид самолета. Прежде всего это сказалось на крыле — оно стало очень небольшим, чаще всего стреловидным, то есть загнутым назад, как оперение у стрелы. Изменилась и дужка крыла, то есть профиль его поперечного сечения. Вместо каплевидной «удобообтекаемой» формы, характерной для дужки крыла самолетов прошлого, крыло современного самолета стало тонким, с острой ножевидной передней кромкой.
«Тройной прыжок» в пассажирской авиации будущего.
Но такое преобразование крыла оказалось обоюдоострым. Оно позволило обеспечить полет с невиданными доселе скоростями, но зато ухудшило летные качества самолета в других отношениях. И прежде всего это сказалось на посадке.
Почему?
Крыло создает подъемную силу, необходимую для полета. Ведь самолет взлетает так же, как взмывает в воздух обычный, всем известный змей. В обоих случаях подъемная сила создается наклонно движущейся плоскостью, пластиной. Именно по этому принципу создавалась вся современная авиация.
О том, как ведет себя наклонно движущаяся пластина, о ее аэродинамических свойствах можно судить, даже не зная аэродинамики. Так, например, совершенно ясно, что с увеличением размеров пластины она способна развить, при прочих равных условиях, большую подъемную силу. Уже в древности в некоторых странах на огромных воздушных змеях удавалось поднимать довольно высоко воинов-разведчиков. Понятно также, что большую пластину труднее продвигать в воздухе с прежней скоростью.
Очевидно, крыло с меньшей поверхностью создает и меньшую подъемную силу при одной и той же скорости движения. Поэтому, если самолет с меньшим крылом будет совершать посадку на прежней скорости, часть его веса окажется уже не уравновешенной подъемной силой, и этот неуравновешенный вес заставит самолет падать. Но никакого удара о землю при посадке быть, конечно, не должно.
Значит, любыми средствами нужно восстановить необходимую величину подъемной силы, близкую к весу самолета. А для этого нужно увеличить скорость движения. Вот почему современные реактивные самолеты садятся со скоростью, большей 200, а иногда даже 300 километров в час, то есть со скоростью, которая каких-нибудь 30–35 лет назад была максимальной для полета истребителей.
Понятно, что посадка на такой скорости представляет собой нелегкую задачу. Ведь трудно управлять и автомобилем, мчащимся по асфальтированному шоссе с гораздо меньшей скоростью, а здесь еще нужно сначала благополучно достичь земной поверхности, плавно, без какого бы то ни было удара коснуться ее.
Но дело не только в этом. Садящийся с большой скоростью самолет пробегает до остановки значительное расстояние. И если в недавнем прошлом длина взлетно-посадочных полос редко достигала тысячи метров, то теперь она иной раз превышает три километра.
И еще одно немаловажное обстоятельство. Когда посадочная скорость была небольшой, то в случае необходимости можно было опуститься и на случайную площадку — ровное поле, луг или дорогу. Теперь это становится невозможным, отчего вынужденная посадка обычно равнозначна катастрофе.
Неудивительно, что авиационная наука и техника настойчиво ищут пути устранения этого огромного недостатка современных скоростных самолетов.
Один путь совершенно очевиден, но и не менее очевидно сложен. Ведь если самолету требуется не одно и то же, а разные крылья на разных режимах полета: короткое и сильно стреловидное — при максимальной скорости, длинное и с меньшей стреловидностью — при умеренных скоростях, и самое длинное — при взлете и посадке, то нельзя ли придумать крыло изменяемой геометрии? Чтобы оно выдвигалось или, наоборот, убиралось, когда это нужно?
Этот очень заманчивый путь настойчиво исследуется современной авиацией. За рубежом предлагаются и изучаются многие проекты подобных самолетов 15*. Нет сомнений, что в будущем многие самолеты будут иметь «раздвигающиеся» крылья, как в свое время была решена задача создания винта переменного шага или убирающегося шасси. Обе эти задачи когда-то казались не менее сложными. И все же до решения этой действительно трудной проблемы авиационная наука и техника проверяют и используют многие другие средства.
Прежде всего напрашивается мысль о том, нельзя ли уменьшить длину пробега современных самолетов при посадке, не уменьшая посадочной скорости. Такие возможности, действительно, есть и уже широко используются.
Нужно сказать, что пробег современных реактивных самолетов при посадке возрос не только из-за увеличения посадочной скорости. На заре авиации, когда пробег был и так небольшим, не было особой нужды принимать специальные меры для его дополнительного уменьшения. Скорость самолета, совершающего пробег после посадки, постепенно гасилась в результате сопротивления воздуха и трения колес о землю. Единственным тормозящим устройством был воздушный винт. Вращаясь с малым числом оборотов, он оказывал при посадке дополнительное и довольно сильное сопротивление. Скорость самолета быстро снижалась, и он останавливался.