Вход/Регистрация
Путешествие в страну микробов
вернуться

Бетина Владимир

Шрифт:

Через некоторое время пришло открытие химического состава «передаточного начала» бактерий, и генетики уточнили свое представление о генах. Их стали считать нуклеопротеидами, то есть сложными соединениями ДНК с белком.

В процессе митоза, когда клетка подготавливается к делению на две новые, с хромосомами происходят удивительные превращения. Каждая хромосома делится вдоль на две части, и обе части попадают в ядра двух новых, дочерних клеток. Таким образом, обе клетки получают поровну тот генетический материал, количество которого в материнской клетке перед митозом (в так называемой интерфазе) удвоилось. Но поскольку генетический материал содержит ДНК, очевидно, что и ее количество увеличилось в два раза. В настоящее время это уже достоверно доказано.

Но если ДНК является химическим носителем наследственности, как сейчас принято считать, то перед нами неизбежно встают новые вопросы. Как именно «закодированы» в молекуле ДНК эти наследственные особенности? Каким образом обеспечивается постоянство этого «кода» из поколения в поколение?

Генетический алфавит

Авторы модели ДНК представляют систему «кодирования» следующим образом: различные свойства ДНК в разных организмах объясняются различием в составе нуклеотидов в ее молекуле. Нуклеотиды, по их мнению, являются своего рода генетическим алфавитом, при помощи которого в ДНК «химическим почерком» закодированы наследственные особенности организма. А поскольку ДНК содержит по меньшей мере несколько тысяч нуклеотидов, возникают неограниченные возможности комбинаций во взаимном чередовании и порядке пар А — Т, Г — Ц в ее молекуле. Каждая новая комбинация придает новые свойства ДНК.

Молекулы ДНК в клетке, поясняют далее Дж. Уотсон и Ф. Крик, способны к «самовоспроизведению» (редупликации) с сохранением постоянного расположения нуклеотидов. Мы знаем, что внутренний «цилиндр» молекулы ДНК состоит из пар оснований А — Т и Г — Ц, соединенных между собой водородными связями. Редупликация молекул ДНК может идти следующим образом. Водородные связи между парными нуклеотидами на одном конце молекулы постепенно начинают прерываться и обе спиральные цепи ДНК «разматываются», освобождаясь друг от друга. Такая развернувшаяся цепь удерживается связями между остатками молекул дезоксирибозы и фосфорной кислоты, «выставив» перпендикулярно оси свои основания. В окружающей среде находятся синтезированные клеткой свободные нуклеотиды, которые могут входить в реакцию со свободными основаниями развернутой цепи ДНК. Но к каждому основанию может приблизиться и соединиться с ним только нуклеотид, имеющий парное, «дополняющее» основание. Это значит, что к развернутой цепи начнет присоединяться другая, недостающая цепь ДНК, причем точно такая, какая была в другой половине макромолекулы и отделилась, чтобы подобным же образом извлечь из среды то, чего ей недостает до полной молекулы ДНК. В результате этих процессов образуются две молекулы ДНК, каждая из которых имеет половину материнской молекулы, дополненную вновь синтезированной. Дочерние молекулы становятся, таким образом, точной копией материнской ДНК. При этом сохраняется и состав генетического материала.

Здесь мы должны, однако, предупредить читателя, что то, о чем он только что прочел, было всего-навсего гипотезой Уотсона и Крика о редупликации ДНК. Вы можете справедливо заметить, что правильность гипотез должна быть доказана экспериментально.

Описанную гипотезу подтвердил американский биохимик А. Корнберг, которому удалось открыть полимеразу ДНК — фермент, участвующий в процессе редупликации. Получив из клеток кишечных бактерий Escherichia coli ДНК и фермент, он соединил их в пробирке, добавив туда же смесь соответствующих нуклеотидов. Через некоторое время количество ДНК в пробирке значительно увеличилось, причем были использованы присутствующие в среде свободные Нуклеотиды. За свое открытие он получил в 1959 году Нобелевскую премию по физиологии и медицине. Эту премию разделил с ним профессор С. Очоа, открывший независимо от Корнберга фермент — полимеразу РНК, которая синтезирует рибонуклеиновую кислоту. Совсем недавно Корнберг обнаружил еще один фермент, участвующий в синтезе ДНК, и назвал его фосфатазой ДНК.

Модель редупликации молекулы ДНК. К развернутым цепочкам (вверху) присоединяются дополнительные цепочки того же состава, что и в материнской молекуле.

Гипотезу о редупликации ДНК подтвердили в 1958 году М. С. Месельсон и Ф. Сталь. Они культивировали бактерии Е. coli в жидкой питательной среде, содержащей вещества с радиоактивным азотом 15N. ДНК этих бактерий оказалась потом «меченной» радиоактивным элементом всюду, где в ее макромолекулах содержится атом азота. Затем ученые культивировали бактерии в жидкой питательной среде, содержащей нерадиоактивный азот 14N. При выращивании бактерии размножались, и можно было наблюдать, как радиоактивный азот ДНК равномерно распределялся по дочерним молекулам ДНК. В каждой последующей генерации бактерий отмечалась половинная радиоактивность ДНК по сравнению с предыдущей. Иначе говоря, при каждой редупликации ДНК радиоактивность материнской макромолекулы равномерно распределялась в двух дочерних макромолекулах, которые создавали недостающие им цепи, привлекая для этого нуклеотиды с нормальным азотом.

Жакоб и Моно обдумывают генетический код

Итак, по мнению Крика и его коллег, ДНК можно считать химическим носителем наследственности, иначе говоря, ДНК — это определяющая составная часть генов. Бидл и Тейтем уже давно сформулировали положение «один ген — один фермент», согласно которому гены определяют синтез и состав ферментов. Если ДНК действительно является генетической молекулой, она должна определять и строение того или иного фермента. Эту определяющую роль ДНК по Уотсону и Крику можно объяснить порядком распределения нуклеотидов в ее молекуле, то есть последовательностью, в которой чередуются в цепях ДНК четыре возможных нуклеотида. Но поскольку ферменты в химическом отношении являются молекулами белков, а структурными элементами последних — аминокислоты, то порядок расположения аминокислот в молекуле белка (а значит, и ферментов) будет определяться расположением нуклеотидов в молекуле ДНК, точнее — расположением нуклеотидов в цепях молекулы ДНК.

Допустим, что так оно в действительности и есть. Тогда возникает вопрос: как же все это происходит? Каким образом тройки нуклеотидов в ДНК определяют синтез белков, в том числе и ферментов?

1961 год войдет в историю не только как год начала космической эры. Он был отмечен также событием, которое приблизило нас к решению важнейшего биологического вопроса — о механизме синтеза белка. В 1961 году сотрудники Пастеровского института Ф. Жакоб и Ж. Моно опубликовали статью, в которой они попытались объяснить интересующее нас явление. Эти ученые, получившие спустя четыре года Нобелевскую премию по медицине и физиологии, предложили гипотезу, согласно которой ДНК управляет синтезом белков не непосредственно. Роль посредника выполняет особая молекула РНК, структура которой представляет собой как бы отпечаток структуры ДНК. Эта особая молекула РНК образуется при раскручивании двойной спирали молекулы ДНК так, что на развернутой цепи ДНК возникает цепь РНК с таким расположением нуклеотидов, которое соответствует расположению последних в цепи ДНК. Обозначим нуклеотиды заглавными буквами названий их органических оснований. На раскрученной спирали ДНК с нижеприведенным порядком нуклеотидов должна возникнуть цепь РНК с соответствующим «парным» и дополняющим расположением нуклеотидов, а именно цепи ДНК

(А — Г — Т) — (Т — Ц — А) — (Т — Т — Т) — (Г — А — А)

отвечает цепь РНК

(У — Ц — А) — (А — Г — У) — (А — А — А) — (Ц — У — У)

После своего образования цепь РНК отделяется от цепи ДНК и перемещается в то место клетки, где происходит синтез ферментов. РНК в приведенной нами схеме содержит четыре тройки нуклеотидов и, если исходить из гипотезы Жакоба и Моно, определяет порядок четырех аминокислот в будущей молекуле белка. Макромолекула белка требует значительно более ёмкой информации, заключенной в молекуле РНК, которая должна содержать столько троек нуклеотидов, сколько молекул аминокислот должно присоединиться к макромолекуле белка.

  • Читать дальше
  • 1
  • ...
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: