Вход/Регистрация
Удивительная Солнечная система
вернуться

Громов Александр

Шрифт:

Рис. 40. Сатурн. Игры теней. Видна относительная прозрачность колец

В общем-то древние греки, а за ними и римляне не зря дали «высочайшей планете» имя бога времени, старости и дряхлости – и притом бога, свергнутого Зевсом (Юпитером), а потому второстепенного. С Земли Сатурн, конечно, заметен хорошо, имея наибольшую звездную величину – 0,9, но все же уступая по блеску даже Меркурию. Одно хорошо: Сатурн со своим 30-летним (точнее, 29,67-летним) периодом обращения вокруг Солнца движется среди созвездий еще медленнее Юпитера, и уж если его положение на небе удобно для наблюдений, то это надолго.

Кроме того, Сатурн, будучи меньше Юпитера и дальше от нас, все же достаточно велик, чтобы быть приятным объектом для наблюдения в небольшой телескоп. При апертуре от 80–90 мм можно уверенно обнаружить деление Кассини в, казалось бы, сплошном кольце планеты, а при апертуре от 250–300 мм – и более узкое деление Энке, разумеется, при достаточном раскрытии кольца. Угловой экваториальный диаметр самой планеты достигает в противостоянии 20,8”, что лишь немногим меньше углового диаметра Марса в противостоянии. Казалось бы, Сатурн должен был дать богатейший материал и при чисто наземных средствах его наблюдения.

Что ж, с помощью наземных средств астрономы сделали все, что смогли. Был определен период вращения Сатурна (10 часов 12 минут на экваторе и более и часов в приполярных областях), был определен спектроскопически газовый состав планеты, оказавшийся схожим с составом Юпитера, но с несколько меньшим содержанием водорода (если не считать атмосферы, где все наоборот), была определена масса планеты. Она оказалась равной 95,16 массы Земли, что составляет менее 30 % массы Юпитера. Как следствие, Сатурн имеет меньшую плотность: всего 0,70 г/см3, что составляет всего 13 % плотности Земли и 52,6 % плотности Юпитера. Он просто недостаточно массивен, чтобы давление газа сильно сжало его внутренние слои. Однако и Сатурн излучает в тепловом диапазоне вдвое больше тепла, чем получает от Солнца, – правда, надо учесть, что получает он гораздо меньше Юпитера, поскольку и расположен значительно дальше, и сам несколько меньше (экваториальный радиус равен 60 268 км, что все-таки на порядок превышает радиус Земли). Нет ни малейших сомнений в том, что механизм тепловыделения Сатурна точно такой же, как у Юпитера и коричневых карликов, – медленное сжатие, еще более медленное, чем у Юпитера. Соответственно, и конвективные процессы в атмосфере Сатурна выражены гораздо слабее. Иногда на поверхности планеты появляются белые пятна, некоторое время спустя растягивающиеся в полосы. По всей видимости, эти пятна образуются вследствие извержений нагретого вещества из глубины, однако они вовсе не настроены принимать вид устойчивых атмосферных вихрей, как на Юпитере. Все говорит за то, что конвекция в атмосфере Сатурна носит более упорядоченный характер, что при относительно малом тепловыделении и неудивительно.

Как и Юпитер, Сатурн обладает собственным магнитным полем и радиационными поясами. Это значит, что внутри планеты имеется твердое ядро, окруженное жидким металлическим водородом. В отличие от Юпитера, магнитное поле Сатурна чисто дипольное, почти точно совпадающее с осью вращения планеты. Само собой разумеется, напряженность магнитного поля Сатурна слабее, чем у его более массивного соседа, – ничего иного и не следовало ожидать. Годы, предшествовавшие началу исследования Сатурна космическими аппаратами, принесли мало новой информации собственно о планете. Открывались новые спутники, были замечены «спицы» в кольцах, но и только.

Лишь с началом исследования Сатурна американскими АМС на астрономов обрушился вал новой информации. Опять-таки он больше касался колец и спутников, но и планета преподнесла некоторые сюрпризы. Сенсацией оказалось обнаружение в высоких южных широтах «горячей» области и шестиугольной (а не кольцеобразной) полосы вокруг него (рис. 41).

Конечно, «горячей» эту область можно назвать лишь с большой натяжкой – просто ее температура на несколько градусов выше средней температуры атмосферы планеты, составляющей около 95 К. Поначалу астрономы объясняли этот феномен энергией, получаемой Сатурном от Солнца, так как на момент обнаружения планета была повернула к Солнцу южным полушарием, но позднее инфракрасный спектрометр зонда «Кассини» обнаружил зону локального разогрева и на северном полюсе Сатурна. Более того, вокруг северного полюса Сатурна расположен такой же шестиугольный вихрь. Собственно говоря, самопроизвольное появление упорядоченных структур в таком, казалось бы, хаотичном процессе, как конвекция, был известен и ранее (например, так называемая неустойчивость Бенара [16] ), так что сама по себе шестиугольная структура нашла если не объяснение, то во всяком случае земные аналоги. Сложнее оказалось с объяснением отвода тепла через полюса. Какие конкретно процессы в атмосфере планеты отвечают за этот феномен, пока неясно [17] .

16

Появление шестиугольных ячеек в слое вязкой жидкости, нагреваемой снизу. – Примеч. авт.

17

По данным наземных наблюдений, зону разогрева вблизи южного полюса имеет и Нептун. – Примеч. авт.

Рис. 41. «Шестиугольный шторм» вокруг южного полюса Сатурна

И все же мир ахнул не от этих нежданных чудес, а от тонкой структуры колец Сатурна (рис. 42), чье изображение впервые передал «Пионер-11».

Рис. 42. Тонкая структура колец Сатурна

До этого считалось, что у Сатурна лишь несколько колец, впрочем, очень ярких и оказывающих влияние на блеск планеты при наблюдениях с Земли. Выделялись 3 основных кольца: А (внешнее), В (среднее) и С (внутреннее, оно же креповое). Среди них кольцо В – самое яркое, а кольцо С – очень слабое, трудно наблюдаемое. Позднее были добавлены кольцо Е (самое внешнее, размытое), G (очень узкое кольцо между кольцами F и Е), D (внутри кольца С) и F (очень узкое кольцо с внешней стороны кольца А); их яркость совсем мала. Давно уже не было никаких сомнений в том, что кольца Сатурна состоят из мелких частиц, так что кадры из некоторых художественных фильмов, где кольца состоят из сплошного камня, являются болезненным бредом недоучки-режиссера. То, что кольца не могут быть сплошными, доказал французский астроном Э. Рош еще в 1848 году, что и подтвердилось на практике. Минимальное расстояние до планеты, ближе которого крупный спутник не может сохранить устойчивую форму и будет разорван приливными силами на мелкие фрагменты, определяется выведенной Рошем формулой. Суть доказательства: кольца Сатурна находятся внутри «полости Роша» и уже по этой причине не могут быть сплошными. Частицы, составляющие кольца, имеют высокое альбедо, а их инфракрасный спектр похож на спектр обыкновенного земного инея. Яркость колец удивительно велика и заметно влияет на общий блеск планеты.

Все газовые планеты Солнечной системы окольцованы, и причина возникновения колец во всех случаях одна: дробление какого-то близко расположенного к планете тела (или тел). В случае Сатурна это было довольно крупное и притом ледяное тело. Было ли оно настолько крупным, чтобы разорваться на мелкие части под действием приливных сил, или ледяному спутнику «помог» расколоться удар какого-нибудь постороннего космического тела – о том мы теперь можем лишь гадать. Ясно лишь, что это событие произошло очень давно, в противном случае осколки не успели бы собраться в чрезвычайно тонкий диск. Исследования с борта «Пионера-11» показали, что наиболее яркое кольцо В представляет собой монослой глыб с характерным поперечником 15 м, погруженный в более толстый слой более мелких обломков размером порядка 10 см. Механизм уплощения диска точно таков же, каков он для протогалактического облака или для протопланетного диска, и причиной его служат неупругие столкновения между частицами, будь то атомы или куски льда.

Впрочем, разреженное внешнее кольцо Е, простирающееся от 3 до 8 радиусов Сатурна (считая от центра планеты), гораздо более «растрепано», чем чрезвычайно тонкие внутренние кольца. Толщина кольца Е достигает целых 6000 км на внутреннем крае и до 15 тыс. км на внешнем. Любопытно, что пик яркости этого кольца наблюдается около орбиты спутника Сатурна Энцелада. Возможно, Энцелад, из трещин на поверхности которого наблюдаются выбросы ледяного крошева, постоянно «подпитывает» кольцо «Е». Кроме того, любая космическая пылинка, летящая со значительной скоростью, выбивает из поверхности спутников крошечные осколки, имеющие достаточные скорости, чтобы покинуть зону притяжения спутника. По всей видимости, в этом, а также в возмущающем действии других крупных спутников, находящихся в пределах кольца Е, кроется причина значительной ширины этого кольца. Нечего и говорить, что кольцо Е далеко выходит за границы полости Роша, достигая почти 1 млн км в диаметре. Кольцо Е можно рассматривать как внешнее «гало» системы колец.

  • Читать дальше
  • 1
  • ...
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: