Шрифт:
Как эта мысль о внешности, число есть вместе с тем отвлечение от чувственного многообразия; оно не сохраняет от чувственного ничего, кроме отвлеченного определения внешности, как таковой; тем самым это чувственное в числе всего более приближается к мысли; число есть чистая мысль о выходе мысли из самой себя.
Дух, возвышающийся над чувственным миром и познающий свою сущность, поскольку он ищет элемента для своего чистого представления, для выражения своей сущности, может поэтому, прежде чем схватит этот элемент, как самую мысль, и приобретет для его изображения чисто духовное выражение, склониться к тому, чтобы избрать для того число, эту внутреннюю, отвлеченную внешность. Поэтому в истории философии мы рано находим употребление числа, как выражения философем. Оно представляет собою последнюю ступень того несовершенства, которое возникает от прибавления чувственного к общему. Древние имели определенное сознание того, что число занимает середину между чувственностью и мыслию. По Аристотелю (Метаф. 1, 5) Платон говорил, что, кроме чувственного и идей, между ними находятся математические определения вещей, отличающиеся от чувственного своею невидимостью (вечностью) и неподвижностью, а от идей тем, что им присущи множественность и сходство, тогда как идея просто тожественна и едина в себе. Более подробное, основательно обдуманное рассуждение об этом Модерата из Кадикса, приводится в Malchi vita Pythagorae ed. Ritterhus, стр. 30 и сл.; что пифагорейцы остановились на числах, он приписывает тому, что они еще не были в состоянии отчетливо понять разумом основные идеи и первые принципы, так как эти принципы трудны для мышления и для речи; числа хорошо служат для обозначения при преподавании; тем самым они между прочим подражают геометрам, которые, не будучи в состоянии выразить телесное в мысли, употребляют фигуры и говорят, что это, например, треугольник, причем хотят, однако, чтобы за треугольник был принимаем не бросающийся в глаза чертеж, а чтобы последний представлял собою лишь мысль о треугольнике. Таким же образом пифагорейцы называли мысль о единстве, тожестве, равенстве и основании согласия, связи и сохранения всего, о самотожестве — одним и т. д. Нет надобности объяснять, что, исходя от чисел, пифагорейцы перешли {135}к выражению мыслей, к ясному изложению категорий равного и неравного, границы и бесконечности; уже в отношении к этим числам указано (там же, в прим. к стр. 31, 1, 5, из Жизни Пифагора у Фотия, стр. 722), что пифагорейцы различали между монадою и одним; монаду они понимали, как мысль, одно же, как число, равным образом два было выражением арифметическим, а диада (ибо так она должна бы была там называться), выражением мысли о неопределенном. Эти древние прежде всего очень правильно усматривали недостаточность числовых форм для определений мысли и столь же правильно требовали далее вместо этого первого вспомогательного средства соответственного выражения для мыслей; насколько опередили они в своих рассуждениях тех, кто ныне считает похвальным, основательным и глубоким заменять мысленные определения снова самими числами и числовыми определениями, как то степенями, далее бесконечно большим, бесконечно малым, одним, деленным на бесконечность, и тому подобными определениями, которые сами часто представляют собою превратный математический формализм, и возвращаться к этому беспомощному детству.
Ввиду сказанного выше, что число занимает промежуточное положение между чувственным и мыслию, так как ему обще с первым содержать в себе многое, внеположенное, то следует заметить, что самое это многое, как принятое в мысль чувственное, есть принадлежащая ей категория внешнего самого в себе. Дальнейшие, конкретные, истинные мысли, как наиболее живое, подвижное, понимаемое лишь через отношение, коль скоро они перемещаются в этот элемент внебытия самого в себе, становятся мертвыми, неподвижными определениями. Чем богаче определенностью, а тем самым и отношениями, становятся мысли, тем, с одной стороны, более запутанным, а с другой более произвольным и лишенным смысла становится их изображение в таких формах, как числа. Одному, двум, трем, четырем, монаде, диаде, триаде, тетраксису близки еще совершенно простые отвлеченные понятия; но если числа должны переходить в конкретные отношения, то напрасно желание продолжать сохранить близость их к понятию.
Но если притом мысленные определения в видах движения понятия, чрез которое (движение) понятие и есть единственно понятие, обозначаются через одно, два, три, четыре, то тем самым на мышление возлагается тяжелейшая из всех задача. Оно движется в таком случае в элементе его противоположности, безотносительности; его деятельность становится работою безумия. Понять, например, что одно есть три, а три — одно, есть потому эта тяжелая задача, что одно есть безотносительное, и что поэтому в нем самом нет определенности, вследствие которой оно переходит в свою противоположность, но оно, напротив, состоит именно в полном исключении этой определенности и отказе от нее. С другой стороны, рассудок пользуется этим против умозрительной истины (как, например, против заключающейся в учении, называемом учением о троичности) и высчитывает ее определения, составляющие одну единицу, чтобы выставить {136}ее, как очевидную бессмыслицу, — т. е. он сам впадает в бессмыслицу, превращая в безотносительное то, что есть только отношение. При слове «троичность», конечно, не рассчитывается на то, чтобы рассудок разумел одно и число, как существенную определенность содержания понятия. Это слово выражает собою презрение к рассудку, который, однако, в своем тщеславии упорствует в удержании одного и числа, как таковых, и противопоставляет это тщеславие разуму.
Принимать числа, геометрические фигуры, как то круг, треугольник и т. д., за простые символы (круг, напр., — вечности, треугольник — троичности), с одной стороны, простительно; но с другой стороны, безумие — полагать, что тем самым можно выразить более, чем в состоянии схватить и выразить мысль. Если в таких символах, как и в других, которые вообще создаются фантазиею в народной мифологии и в поэзии, и относительно которых чуждые фантазии геометрические фигуры сверх того скудны, должны, как и в последних, заключаться глубокая мудрость, глубокое значение, то на одной мысли лежит обязанность выяснить истину, заключающуюся в них и притом не только в символах, но и в природе и духе; в символах истина помрачена и прикрыта чувственным элементом; вполне ясна для сознания она становится лишь в форме мысли; ее значение есть лишь сама мысль.
Но пользование математическими категориями в видах получения каких-либо определений для метода или содержания философской науки, уже потому должно считаться по существу превратным, что, поскольку математическими формулами обозначаются мысли и различия понятий, это значение должна прежде всего указать, определить и оправдать философия. В своих конкретных науках она почерпает логическое из логики, а не из математики; обращение при пользовании логикою в философии к тем видоизменениям, в коих логическое является в прочих науках, и из коих одни суть только чаяния, другие — искажение логического, может считаться лишь вспомогательным средством философской неспособности. Простое применение таких извлеченных из математики формул есть сверх того внешний прием; самому этому применению должно бы предшествовать сознание как его ценности, так и его значения; но такое сознание дается лишь мысленным рассмотрением, а не авторитетом математики. Такое сознание их и есть сама логика, и это сознание уничтожает их частную форму, делает ее излишнею и бесполезною, исправляет ее и одно сообщает им оправдание, смысл и ценность.
Что касается употребления числа и счета, поскольку оно должно составлять главные педагогические основы, то оно само собою выясняется из предыдущего. Число есть не-чувственный предмет, и занятие им и его комбинациями — не-чувственное занятие; тем самым дух удерживается на рефлексии в себя и на внутренней отвлеченной работе, что представляет собою большую, но одностороннюю важность. Ибо, с другой стороны, так как в основе числа лежит лишь внешнее, лишенное мысли различие, то эта работа есть лишенная мысли, механическая. Требуемое ею напряжение силы состоит {137}главным образом в том, чтобы удержать то, что лишено понятия и комбинировать его без помощи понятий. Содержание здесь есть пустое одно; собственное содержание нравственной и духовной жизни и ее индивидуальных образований, которое, как благороднейшая пища, должно служить главным средством воспитания юношеского духа, вытесняется бессодержательным одним; действие, производимое этими упражнениями, коль скоро они сделаны главным делом и главным занятием, может состоять лишь в том, что дух по форме и содержанию опустошается и притупляется. Так как счет есть столь внешнее и тем самым механическое занятие, то оказалось возможным изобрести машины, совершеннейшим образом исполняющие арифметические действия. Если бы о природе счета было известно одно это обстоятельство, то уже тем самым был бы решен вопрос, как следует относиться к попытке обратить счет в главное средство развития духа и тем самым предать последний пытке превращения его в машину.
В. Экстенсивное и интенсивное определенное количество
а. Различие их
1. Определенное количество, как выяснилось ранее, имеет свою определенность, как граница, в определенном числе. Последнее есть нечто дискретное в себе, многое, не имеющее такого бытия, которое было бы отлично от своей границы и имело бы ее вне себя. Таким образом определенное количество со своею границею, которая есть нечто многообразное по себе самой, есть экстенсивная величина.
Экстенсивную величину следует отличать от непрерывной: первой прямо противоположна не дискретная, а интенсивная величина. Экстенсивная и интенсивная величины суть определенности самой количественной границы, определенное же количество тожественно своей границе; напротив, непрерывная и дискретная величины суть определения величины в себе, т. е. количества, как такового, поскольку при определенном количестве отвлекается от границы. Экстенсивная величина имеет момент непрерывности в ней самой и в своей границе, поскольку ее множественность вообще есть непрерывное; граница, как отрицание, является поэтому в этом равенстве многого, как ограничение единицы. Непрерывная же величина есть продолжающее себя количество безотносительно к границе, и поскольку первая представляется вместе с последнею, это есть ограничение вообще без того, чтобы в нем была положена дискретность. Определенное количество, только как непрерывная величина, еще не определено по истине для себя, так как в нем отсутствует одно, в котором заключается определение для себя, а также отсутствует и число. Равным образом и дискретная величина есть непосредственно лишь различенное многое вообще, которое, поскольку оно, как таковое, должно бы было иметь границу, было бы лишь {138}множеством (eine Menge), т. е. неопределенно ограниченным; чтобы оно получило определенность определенного количества, требуется соединение многих в одном, чтобы тем сами они были положены тожественными границе. То и другое, и непрерывная, и дискретная величины, как определенное количество, вообще полагают в ней (границе) лишь одну из этих двух сторон, чем самым это количество вполне определяется и становится числом. Последнее есть непосредственно экстенсивное определенное количество, простая определенность, которая есть по существу определенное число, но определенное число одной и той же единицы; оно отличается от числа лишь тем, что в нем определенность категорически положена, как множественность.