Шрифт:
Напротив, уже ранее было сказано, что определение математического бесконечного и именно то, которое употребляется в высшем анализе, соответствует понятию истинно бесконечного; только для объединения обоих определений должно быть предпринято подробное развитие математического понятия. Что касается, во-первых, истинно бесконечного определенного количества, то оно было определено, как бесконечное в нем самом; оно таково, поскольку, как было выяснено, конечное определенное количество или определенное количество вообще и его потустороннее, ложное бесконечное, оба должны быть одинаково сняты. Снятое определенное количество тем самым возвращено к своей простоте и к отношению к себе самому, но не только как к экстенсивному, так как оно перешло в интенсивное опре{161}деленное количество, имеющее определенность лишь в себе при внешней множественности, относительно которой оно, однако, безразлично и от которой оно должно отличаться. Бесконечное определенное количество содержит, напротив, во-первых, внешность и, во-вторых, ее отрицание в нем самом; таким образом оно есть уже не некоторое определенное количество, не определенность величины, имеющая существование, как определенное количество, но нечто простое и потому лишь момент; оно есть определенность величины в качественной форме; его бесконечность состоит в том, чтобы быть качественною определенностью. Поэтому, как момент, оно состоит в существенном единстве со своим другим, будучи лишь определено этим своим другим, т. е. оно имеет значение лишь в связи с находящимся к нему в отношении. Вне этого отношения оно нуль; ибо, так как определенное количество, как таковое, безразлично к отношению, то в нем должно быть непосредственное покоящееся определение; в отношении, оно, как только момент, не есть нечто безразличное для себя; в бесконечности, как бытии для себя, поскольку оно вместе с тем есть некоторая количественная определенность, оно есть лишь для одного.
Понятие бесконечного, как оно изложено здесь отвлеченно, окажется лежащим в основе математического бесконечного, и само станет отчетливее, когда мы рассмотрим различные ступени выражения определенного количества, как момента отношения, начиная с низшей, на которой оно есть еще вместе с тем определенное количество, как таковое, до высшей, на которой оно приобретает значение и выражение собственно бесконечной величины.
Итак, возьмем же прежде всего определенное количество в отношении, как правильную дробь. Такая дробь, например 2/7, не есть такое определенное количество, как 1, 2, 3 и т. д.; она есть, правда, обыкновенное конечное число, но, как дробь, опосредованное двумя другими числами, которые одно относительно другого суть определенное число и единица, причем единица есть также определенное число. Если отвлечь от их ближайшего соотносительного определения и рассматривать их только по тому, что им свойственно в количественном смысле, как определенным количествам, то вообще 2 и 7 безразличны одно к другому; но так как здесь они выступают, лишь как моменты одно другого, а тем самым и третьего (определенного количества, именуемого показателем), то они тем самым суть не просто 2 и 7, а имеют значение лишь по их относительной определенности. Вместо них можно поэтому взять также 4 и 14 или 6 и 21 и т. д. до бесконечности. Тем самым они начинают приобретать качественный характер. Если бы они были просто определенными количествами, то из 2 и 7 первое было бы просто 2, а второе 7; 4, 14, 6, 21 и т. д. суть уже совсем другое, чем эти числа, и поэтому, поскольку последние были лишь непосредственными определенными количествами, первые не могли бы быть поставлены вместо них. Но поскольку 2 и 7 имеют значение не таких определенных количеств, безразличие их границ снимается; тем самым они с этой стороны приобретают момент бесконеч{162}ности, так как они становятся не просто ими самими, но сохраняется их количественная определенность, уже как сущая в себе качественная — именно определяемая их отношением. Вместо них может быть поставлено бесконечное множество других чисел, лишь бы не изменялась величина дроби в определенности данного отношения.
Но выражение, которое находит себе бесконечность при изображении ее числовою дробью, потому несовершенно, что оба члена дроби, 2 и 7, взятые вне этого отношения, суть обыкновенные взаимно безразличные определенные количества; положение их — быть моментами отношения — есть для них нечто внешнее и безразличное. Равным образом, величина их отношения есть обычное определенное количество, показатель отношения.
Буквы, над которыми оперирует общая арифметика, будучи ближайшим обобщением чисел, уже не имеют свойства обладать определенною числовою величиною; они суть лишь общие знаки и неопределенные возможности всякой определенной величины. Поэтому дробь a/b представляет, по-видимому, более соответственное выражение бесконечного, так как a и b, взятые вне их отношения, остаются неопределенными, и даже отделенные одна от другой не имеют никакого свойственного им частного значения. Но хотя эти буквы положены, как неопределенные величины, смысл их все же состоит в том, что они суть некоторые конечные количества. Так как они поэтому, хотя служат общим обозначением, но все же для определенного числа, то все же для них безразлично быть в отношении, и вне его они сохраняют то же значение.
Если мы рассмотрим ближе, что представляет собою отношение, то окажется, что ему свойственны оба определения, во-первых, определенного количества, а во-вторых, последнего, не как непосредственного, а как имеющего в себе качественную противоположность; оно потому остается тем же безразличным определенным количеством, что возвращается в себя из своего инобытия, из противоположения, т. е. бесконечно. Оба эти определения представляют в их различении одного от другого следующую общеизвестную форму.
Дробь 2/7 может быть выражена, как 0,285714…, 1/(1–а) — как 1+а+а2+а3 и т. д. Следовательно, она есть некоторый бесконечный ряд; самая дробь именуется суммою или конечным выражением этого ряда. Если сравнить оба эти выражения, то одно из них, бесконечный ряд, изображает ее, уже не как отношение, но с той стороны, что она есть определенное количество в смысле множества таких количеств, присоединяемых одно к другому, в смысле определенного числа. Что величины, составляющие это число, состоят сами из десятичных дробей, т. е. из отношений, это не имеет здесь значения; ибо это обстоятельство касается особого вида единиц этих величин, а не их самих, как составляющих определенное число; подобно тому, как состоящее из многих {163}цифр целое число десятеричной системы остается по существу определенным числом, и не обращается внимания на то, что оно состоит из произведений одних чисел на число десять и его степени. Также здесь не принимается в соображение, что существуют другие дроби, кроме, напр., 2/7, которые, обращенные в десятичные дроби, не дают бесконечного ряда, хотя каждая из них в числовой системе другой единицы может быть изображена, как таковой.
Так как в бесконечном ряду, долженствующем изображать собою дробь, исчезает та сторона, по которой она есть отношение, то исчезает и та сторона, по которой она, как показано выше, есть бесконечность в ней. Но последняя возвращается другим путем; именно самый ряд бесконечен.
Какого рода эта бесконечность ряда, явствует само собою; это ложная бесконечность прогресса. Ряд содержит в себе и представляет собою то противоречие, что нечто, существующее, как отношение и имеющее внутри его ряда качественную природу, изображается, как безотносительное, просто как определенное количество, как определенное число. Вследствие того, определенному числу, выраженному посредством ряда, всегда чего-то нехватает, так что оно постоянно должно выходить за пределы того, что положено, чтобы достигнуть требуемой определенности. Закон этого прогресса известен, он заключается в определении определенного количества, содержащемся в дроби, и в природе той формы, в которой она должна быть выражена. Определенное число через продолжение ряда может достигнуть потребной точности; но его изображение всегда остается лишь долженствованием; ему присуща потусторонность, не могущая быть снятою, так как выражение чего-либо основанного на качественной определенности посредством определенного числа есть постоянное противоречие.
Этому бесконечному ряду действительно присуща та неточность, от которой в истинном математическом бесконечном остается лишь видимость. Оба эти вида математического бесконечного также не должны быть смешиваемы, как и оба вида философского бесконечного. Для изображения истинного математического бесконечного первоначально употреблялась или опять возобновлена в новое время форма ряда. Но она для него не необходима; напротив, как будет показано далее, бесконечное бесконечного ряда существенно отличается от истинного бесконечного. Он, напротив, уступает в этом отношении даже изображению дроби.
А именно, бесконечный ряд содержит в себе ложную бесконечность потому, что то, что должно быть выражено посредством ряда, остается долженствованием; и то, что он выражает, причастно некоторой не исчезающей потусторонности и отличается от того, что должно быть выражено. Он бесконечен не по своим членам, которые положены, но потому что они не полны, потому что то другое, что им существенно принадлежит, находится вне их; то, что есть внутри его, сколько бы ни было в нем положено членов, есть лишь конечное в собственном значении этого слова, поло{164}жено, как конечное, т. е. как такое, которое не есть то, чем оно должно быть. Напротив, то, что называется конечным выражением или суммою такого ряда, не имеет этого недостатка; ему вполне принадлежит то значение, которого ряд только ищет; потустороннее в нем уже не убегает; то, что оно есть, и то, чем оно должно быть, уже не разделено, но есть одно и то же.