Шрифт:
Решение представлено на рис. 12.51, в.
1. Через точки 1 и 2 проведите отрезки 34 и 35, параллельные ребрам вспомогательного тетраэдра.
2. Используя команду Окружность, касательная к 3 кривым, в треугольник 345 впишите вспомогательную окружность.
3. Через центр окружности проведите вертикальный отрезок.
4. Из вершины треугольника проведите отрезок 36. Точка 6 должна быть построена на уровне верхней грани куба.
5. Через точку 6 проведите отрезок 78, параллельный боковому ребру вспомогательного тетраэдра. Концы отрезка необходимо выровнять до соответствующих осей.
6. Постройте вспомогательный отрезок 89. Точка 9 должна быть расположена на продолжении горизонтальной оси, проходящей через центр окружности.
7. Постройте фронтальную и горизонтальную проекции тетраэдра. Нанесите размер, определяющий высоту тетраэдра.
Условие. Дан тетраэдр, у которого грань вписана в окружность диаметром 40 мм. Вписать в тетраэдр геометрические тела высотой 15 мм. Определить параметры оснований вписанных геометрических тел:
цилиндра;
усеченной шестиугольной призмы;
четырехугольной призмы.
Решение. На рис. 12.52 показаны прямоугольные проекции пирамиды и вписанных в пирамиду заданных тел. Знаком «*» отмечены искомые величины, определенные в результате построений и измерений. На первом этапе строятся проекции треугольника, принадлежащего поверхности пирамиды, которого касаются верхние грани вписанных тел. Далее в горизонтальную проекцию построенного треугольника вписывается верхняя грань соответствующего тела. На рис. 12.52, в показан вспомогательный квадрат со стороной 20 мм, с помощью которого строится горизонтальная проекция вписанной призмы.
Приложения
Приложение 1
Варианты учебных заданий
Приложение 2
Исходные данные для твердотельного моделирования сборок
Приложение 3
Исходные данные для моделирования семейств деталей