Вход/Регистрация
Физика для всех. Движение. Теплота
вернуться

Китайгородский Александр Исаакович

Шрифт:

Высокие температуры возникают в печах и горелках. В кондитерских печах температура достигает 220–280 °C. Более высокие температуры применяются в металлургии – 900–1000° дают закалочные печи, 1400–1500° – кузнечные. В сталеплавильных печах температура достигает 2000°.

Рекордно высокие печные температуры получают с помощью электрической дуги (около 5000°). Пламя дуги позволяет «расправиться» с самыми тугоплавкими металлами.

А какова температура пламени газовой горелки? Температура внутреннего голубоватого конуса пламени всего лишь 300°. Во внешнем конусе температура доходит до 1800°.

Несравненно более высокие температуры возникают при взрыве атомной бомбы. По косвенным оценкам, температура в центре взрыва достигает многих миллионов градусов.

В самое последнее время предприняты попытки получить такие сверхвысокие температуры в специальных лабораторных установках (Огра, Зета), изготовляемых у нас и за рубежом. На кратчайшее мгновение удавалось достигнуть температур до двух миллионов градусов.

Сверхвысокие температуры существуют и в природе, но не на Земле, а на других телах Вселенной. В центрах звезд, в частности Солнца, температура достигает десятков миллионов градусов.

Поверхностные же участки звезд имеют значительно более низкую температуру, не превышающую 20 000°. Поверхность Солнца нагрета до 6000°.

Теория идеального газа

Свойства идеального газа, давшего нам определение температуры, очень просты. При постоянной температуре действует закон Бойля – Мариотта: произведение pVпри изменениях объема или давления остается неизменным. При неизменном давлении сохраняется частное V/ T, как бы ни менялись объем или температура. Эти два закона легко объединить. Ясно, что выражение рV/ Тостается тем же, как при постоянной температуре, но изменяющихся Vи p, так и при постоянном давлении, но изменяющихся Vи T. Выражение pV/ Tостается постоянным при изменении не только любой пары, но и одновременно всех трех величин – р, Vи T. Закон ( pV)/ T= const, как говорят, определяет уравнение состояния идеального газа.

Идеальный газ выбран в качестве термометра потому, что только его свойства связаны с одним лишь движением (но не с взаимодействием) молекул.

Каков же характер связи между движением молекул и температурой? Для ответа на этот вопрос надо найти связь между давлением газа и движением в нем молекул.

В сферическом сосуде радиуса Rзаключено Nмолекул газа (рис. 95). Последим за какой-либо молекулой, например той, что движется в данный момент слева направо вдоль хорды длиной l. На столкновения молекул обращать внимания не будем: такие встречи не сказываются на давлении. Долетев до границы сосуда, молекула ударится о стенку и с той же скоростью (удар упругий) понесется уже в другом направлении. В идеале такое путешествие по сосуду могло бы продолжаться вечно. Если v– скорость молекулы, то каждый удар будет происходить через l/ vсекунд, т.е. в секунду каждая молекула ударится v/ lраз. Непрерывная дробь ударов Nмолекул сливается в единую силу давления.

По закону Ньютона сила равна изменению импульса в единицу времени. Обозначим изменение импульса при каждом ударе через . Это изменение происходит v/ lраз в секунду. Значит, вклад в силу со стороны одной молекулы будет (/ l)· v.

На рис. 95 построены векторы импульсов до и после удара, а также вектор приращения импульса . Из подобия возникших при построении треугольников следует: / l= mv/ R. Вклад в силу со стороны одной молекулы примет вид:

Так как длина хорды не вошла в формулу, то ясно, что молекулы, движущиеся по любой хорде, дают одинаковый вклад в силу. Конечно, изменение импульса при косом ударе будет меньше, но зато удары в этом случае будут чаще. Расчет показал, что оба эффекта в точности компенсируются.

Так как в сфере Nмолекул, то суммарная сила будет равна:

где v ср– средняя скорость молекул.

Давление ргаза, равное силе, поделенной на площадь сферы 4 R 2, будет равно:

где V– объем сферы.

Таким образом,

Это уравнение было впервые выведено Даниилом Бернулли в 1738 г. *11 .

Из уравнения состояния идеального газа следовало: pV= const· T; из выведенного уравнения видим, что pVпропорционально v ср 2. Значит,

11

Швейцарец по происхождению, Д. Бернулли работал и жил в России; он был петербургским академиком. Не меньшую известность имеет деятельность Жана Бернулли и Якова (Жака) Бернулли.

т.е. скорость молекулы идеального газа пропорциональна корню квадратному из абсолютной температуры.

Закон Авогадро

Пусть вещество представляет собой смесь различных молекул. Нет ли такой физической величины, характеризующей движение, которая была бы одинакова для всех этих молекул, например для водорода и кислорода, находящихся при одинаковой температуре?

Механика дает ответ на этот вопрос. Можно доказать, что одинаковыми у всех молекул будут средние кинетические энергии поступательного движения mv ср 2/2 .

  • Читать дальше
  • 1
  • ...
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: