Вход/Регистрация
Основы кибернетики предприятия
вернуться

Форрестер Джей

Шрифт:

6-1. Вычисления для момента времени К.

Ясно, что в принципе мы можем выбрать столь небольшие интервалы времени, что отрезки прямых, проведенных в пределах каждого интервала, будут сколь угодно близко приближаться к любой кривой (см. рис. 6–2).

Рис. 6–2. Аппроксимация переменного уровня с помощью прямолинейных отрезков.

Чем короче и многочисленней будут интервалы, тем более полным будет приближение к кривой. Практически мы будем иметь возможность выбирать интервал столь короткий, сколь это необходимо; однако он должен быть таким, чтобы объем вычислений не превышал возможностей современных вычислительных машин[30].

Вернемся к рис. 6–1, где последовательным моментам времени даны обозначения J, К и L.

Момент К. используется для обозначения «данного момента времени». Интервал JK только что истек, и информация о нем, как и о предыдущих периодах, может быть использована при решении уравнений. Информация об уровнях и темпах в последующее время вообще недоступна при решении уравнений в настоящий момент времени К.

Для принципа недоступности будущей информации исключений не существует. Прогнозы не представляют собой будущей информации, они являются лишь представлениями о будущем, основанными на полученной ранее информации.

Для целей численного решения основные уравнения модели разделены на две группы: группу уравнений уровней и группу уравнений темпов. При рассмотрении какого-либо интервала времени в первую очередь решаются уравнения уровней, а затем полученные результаты используются в уравнениях темпов. (Вспомогательные уравнения, которые будут рассмотрены ниже, вводятся для удобства в том или ином случае и решаются сразу после решения уравнений уровней — до решения уравнений темпов.)

Уравнения должны решаться для моментов времени, разделенных интервалом DT. Уравнения относятся каждый раз к условным моментам времени J, К и L, причем произвольно принимается, что К представляет «настоящий» момент времени. Другими словами, принимается допущение, что в процессе решения мы как раз достигли момента времени К, но пока еще не решили ни уравнений уровней в момент К, ни уравнений темпов в интервале KL.

Уравнения уровней показывают, каким образом можно определить уровни в момент К, основываясь на знании уровней в момент J и темпов на протяжении интервала JK. В момент времени К, когда решаются уравнения уровней, вся необходимая информация может быть получена и получается из предшествующего интервала времени.

Уравнения темпов решаются в настоящий момент К после того, как решены уравнения уровней. Поэтому значения уровней в настоящий момент К могут служить вводами для уравнений темпов[31].

Величины, определяемые из уравнений темпов (решений), относятся к темпам потоков, на которые мы будем воздействовать в течение предстоящего интервала KL.

Постоянство темпов в пределах интервала DT определяет собой постоянную скорость изменения уровней в течение этого интервала времени. Наклон прямых на рис. 6–1 пропорционален темпам и связывает между собой значения уровней в моменты времени J, К и L.

После определения уровней в момент К и темпов для интервала KL время «индексируется». Это означает, что положения точек J, К, L на рис. 6–1 сдвигаются на один интервал времени вправо. Уровни, только что вычисленные для момента времени К, считаются теперь уровнями в момент J. Темпы для интервала KL становятся темпами для интервала JK. «Настоящий момент времени» К сдвигается таким образом на один интервал времени продолжительностью DT. Всю последовательность вычислений можно теперь повторить для определения нового состояния системы в момент времени более поздний, чем для предшествующего состояния, на величину DT. Модель следит за изменением системы во времени таким образом, что окружающая среда (уровни) обусловливает решения и действия (темпы), которые в свою очередь воздействуют на окружающую среду. Таким образом, взаимодействия внутри системы происходят в соответствии с «описанием», которое было принято за основу при составлении уравнений модели.

6. 2. Символы, используемые в уравнениях

Для выражения величин в уравнениях модели нужно выбрать символы, которые имели бы наиболее мнемонический характер, то есть напоминали бы нам общепринятую терминологию, связанную с повседневной практической деятельностью. Отчасти для того, чтобы согласовать символы с общепринятыми, отчасти в связи с ограниченным числом символов, которые могут быть напечатаны выходными устройствами цифровых вычислительных машин, мы будем пользоваться для обозначения переменных и констант в модели только группами прописных букв английского алфавита и арабскими цифрами. Так, численность работников предприятия А будет обозначаться EPLTA; наличие товаров на складе № 5 может быть обозначено INVW5; наличие товаров, необходимое в звене розничной торговли, могло бы быть обозначено IDR. Темп выпуска готовой продукции предприятием можно обозначить MOF.

  • Читать дальше
  • 1
  • ...
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: