Шрифт:
Наблюдается очень хорошая линейная зависимость итогового времени от числа потоков (от 2 до 200). Таким образом, время выполнения работы в каждом из потоков практически не зависит от общего числа параллельно выполняющихся с ним потоков.
Повторим то же самое, но уже для случая параллельных процессов:
Здесь наблюдается лишь незначительное увеличение крутизны линейной зависимости, что можно отнести к некоторым накладным расходам на поддержание достаточно большого числа записей о процессах в таблицах менеджера процессов, но величина этого эффекта также весьма малосущественна.
В итоге, в отношении «легковесности» потоков можно сказать следующее:
• При необходимости динамическогосоздания параллельных ветвей в ходе выполнения программы (а это достаточно классический случай, например в разнообразных сетевых серверах, создающих ветвь обслуживания для каждого нового клиента) производительность приложения, функционирующего на основе потоков, может быть значительно выше (до нескольких порядков), а время реакции соответственно ниже.
• При статическомвыполнении (фиксированном количестве параллельных ветвей в приложении) эффективность приложений, построенных на параллельных потоках или параллельных процессах, практически не отличается. Более того, эффективности таких приложений не отличаются и от классической последовательной организации приложения, работающего в одном потоке.
• Существует дополнительный фактор, обеспечивающий «легковесность» потоков в противовес процессам, — это легкость и эффективность их взаимодействия в едином адресном пространстве. В случае процессов для обеспечения таких взаимодействий возникает необходимость привлечения «тяжеловесных» механизмов IPC разнообразной природы (именованные и неименованные каналы, разделяемая память, обмен UNIX-сообщениями и другие). При рассмотрении обмена сообщениями QNX мы еще раз убедимся в том, что обмены и взаимодействия между процессами могут требовать весьма существенных процессорных ресурсов, а при обменах с интенсивным трафиком могут стать доминирующей компонентой, определяющей пределы реальной производительности системы.
Пример: синхронное выполнение кода
Выше приводилось достаточно много подобных примеров, но это были примеры, так сказать, «локальные», фрагментарные, иллюстрирующие использование какой-то одной возможности применительно к потокам. Сейчас мы приведем пример, реализующий часто возникающую на практике возможность. Некоторые программные действия (функции) мы хотели бы запускать периодически с фиксированным временным интервалом T, что весьма напоминает действия и аппаратной реализации, которые должны быть выполнены по каждому импульсу «синхронизирующей последовательности».
Простейшая реализация могла бы выглядеть так:
Но это очень «слабое» решение:
• Задержка, обеспечиваемая функцией пассивной задержки
• Если в системе одновременно с этим приложением работает процесс (поток) более высокого приоритета, то наше приложение может вообще никогда «не проснуться», по крайней мере, пока это не «соизволит» санкционировать параллельное приложение.
• Здесь мы обеспечиваем только одну синхронизированную последовательность вызовов функции