Вход/Регистрация
QNX/UNIX: Анатомия параллелизма
вернуться

Цилюрик Олег Иванович

Шрифт:
Примечание

Дескриптор узла в сети QNET — понятие относительное; он может быть получен, например, вызовом

netmgr_strtond
. Но и здесь не все так просто:

• Дескриптор, соответствующий, скажем, узлу «host», полученный на узле «А», может иметь значение N, но дескриптор того же узла, полученный на узле «В», будет иметь уже значение M, то есть дескриптор узла — это «дескриптор сетевого узла X, как он видится с сетевого узла Y».

• Тот же дескриптор узла «host» может быть определен как имеющий значение N, но уже через несколько секунд он может «сменить» свое значение на M, то есть значения, полученные

netmgr_strtond
, должны использоваться немедленно...

Эти и другие сложности относятся к особенностям программного использования QNET и требуют отдельного обстоятельного обсуждения. Однако они не являются предметом нашего текущего рассмотрения.

pid
— PID процесса, которому направляется сигнал,
pid
может иметь и отрицательное значение, при этом положительное значение (
– pid
) идентифицирует группу процессов EGID, и сигнал будет отправлен всем процессам группы. При нулевом значении
pid
сигнал будет отправлен всем процессам группы процесса отправителя.

tid
— 0 или TID потока, которому направляется сигнал. При указании
tid
сигнал будет доставляться только указанному потоку, а при
tid
= 0 — всем потокам процесса. Дальнейшая судьба сигнала в обоих случаях зависит от маскирования сигнала в потоке, как мы рассматривали ранее.

signo
— номер сигнала (с ним неоднократно встречались выше).

code
и
value
— код и значение, ассоциированные с сигналом (их мы тоже встречали при рассмотрении модели сигналов реального времени).

Как и обычно, внешнее различие (для программиста) основной формы

SignalKill
и формы, безопасной в многопоточной среде,
SignalKill_r
состоит в том, что:

•

SignalKill
возвращает -1 в случае ошибки, а код ошибки заносится в
errno
; любой другой возврат является индикатором успешного выполнения;

•

SignalKill_r
возвращает
EOK
в случае успеха, а в случае ошибки возвращается отрицательный код ошибки (тот же, который основная форма заносит в
errno
, но со знаком минус).

Возможны следующие коды ошибок, возвращаемые этими вызовами:

EINVAL
— недопустимое числовое значение
signo
;

ESRCH
— несуществующий адресат (
pid
или
tid
);

EPERM
— процесс не имеет достаточных прав для посылки сигнала;

EAGAIN
— недостаточно ресурсов ядра для выполнения запроса.

Для того чтобы получить работающий пример использования этой возможности, возьмите любой из приводившихся выше примеров, разнесите процессы по сетевым узлам и определите «целеуказание» в процессе-отправителе.

Простейшим примером и демонстрацией удаленной реакции в сети может быть следующая последовательность действий:

• Производим запуск задачи на удаленномузле, например:

# on -f <host> raqc

• После чего, выполнив ряд операций в запущенной программе, прекращаем ее работу по [Ctrl+C] с локального терминала.

Интересно оценить далеко идущие последствия этого «маленького» расширения стандартной POSIX-схемы работы с сигналами:

• На технике «сетевых сигналов» может быть построена целая система уведомлений сетевых составляющих компонент единой программной прикладной системы.

• Именно «уведомлений» (но не синхронизации с наследованием приоритетов, влияющей на общую систему диспетчеризации составляющих частей и т.п.): посылка сигнала является неблокирующей операцией (не требует ответа), а прием сигнала не сопровождается наследованием (или любым изменением) приоритетов.

• Такое «сигнальное» взаимодействие, записанное в формальной POSIX-семантике (но, по сути, осуществляющее механизмы, далеко выходящие за POSIX), может оказаться гораздо проще в записи и понимании, чем при использовании низкоуровневых механизмов обмена сообщениями (пульсами).

4. Примитивы синхронизации

ОС QNX Neutrino предоставляет широкий набор элементов синхронизации выполнения потоков, как в рамках одного процесса, так и разных. Это практически полный спектр примитивов, описываемых как базовым стандартом POSIX, так и всеми его расширениями реального времени. Тем не менее при работе со всеми этими примитивами не покидает ощущение, что некоторые из них являются органичными для самой ОС (мьютекс, условная переменная), в то время как другие — достаточно громоздкая надстройка над базовыми механизмами, реализуемая, главным образом, в угоду POSIX.

Примечание

К сожалению, и техническая документация QNX [8], и фундаментальная книга Р. Кертена [1] написаны по одной схеме: [35] все, что касается примитивов синхронизации, введенных более поздними расширениями POSIX (барьеры, жесткая блокировка (sleepon), спинлок, блокировки чтения-записи), описывается детально и сопровождается обстоятельными примерами кода, а вот базовые понятия, такие как

pthread_mutex_t
,
sem_t
(да и
pthread_cond_t
, по существу), описаны лишь качественно, «на пальцах», в иллюстративных рассказах об алгоритме пользования ванной комнатой и кухней (термин bathroom встречается намного чаще, чем
pthread_mutex_t
). Мы попытаемся по возможности компенсировать этот перекос.

35

И здесь вопрос не в плагиате. Известно, что Р. Кертен долгое время сотрудничал с QSSL именно по части написания документации, поэтому она во многом следует его манере изложения, хотя более поздняя книга Р. Кертена [1] изложена заметно доходчивее.

  • Читать дальше
  • 1
  • ...
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: