Вход/Регистрация
Веселые задачи. Две сотни головоломок
вернуться

Перельман Яков Исидорович

Шрифт:

— Правильно! В этом и состоит секрет успешного выполнения подобных путешествий, или — что то же самое — правило вычерчивания фигур одним росчерком пера. Если потребуется непрерывным движением начертить фигуру — безразлично, в плоскости или в пространстве, — то прежде всего внимательно ее рассмотрите и определите, имеются ли у этой фигуры «нечетные» вершины, т. е. такие, у которых встречается непарное число линий. Если подобных вершин в фигуре больше двух, то задача неразрешима. Если только две, то нужно начать вычерчивание в одной «нечетной» точке и закончить в другой. Если «нечетных» вершин вовсе нет, то можно начинать чертить из любой вершины, и всегда найдется способ вычертить всю фигуру и вернуться в начальную точку. Каким путем вы в таком случае поведете перо — безразлично. Надо только заботиться о том, чтобы не вести линию к вершине, от которой нет больше пути, т. е. стараться не замыкать фигуру раньше времени. Вот пример: фигура в форме буквы Ф (рис. 159) — Можно ли ее начертить одним росчерком пера?

Рис. 159.

— В ней всего две «нечетные» вершины — концы «палки». Значит, начертить ее одним росчерком пера возможно. Но как?

— Нужно начать с одного конца «палки» и кончить другим (рис. 160).

Рис. 160.

— В детстве я ломал голову над тем, чтобы начертить одним росчерком пера четырехугольник с двумя диагоналями (рис. 161). Мне этого никак не удавалось сделать.

Рис. 161.

— И неудивительно: ведь в этой фигуре 4 «нечетные» вершины — углы четырехугольника. Бесполезно даже ломать голову над этой задачей: она неразрешима. — А что скажете вы о фигуре, изображенной на рис. 162?

Рис. 162.

— Ее тоже нельзя начертить одной непрерывной линией, потому что у нее 4 вершины, в каждой из которых сходится по 5 линий, т. е. у нее 4 «нечетных» вершины. Зато легко начертить фигуры, показанные на рис. 163 и 164: у них все вершины «четные» (решение для второй фигуры см. на рис. 165).

Рис. 163.

Рис. 164.

На каждой вершине этой фигуры сходятся 4 ребра; в ней вовсе нет «нечетных» вершин.

Рис. 165.

Теперь перейдем к той задаче, которую решает наша муха: обойти по одному разу все ребра октаэдра, не отрывая пера от бумаги.

Рис. 166.

Поэтому можно начать путешествовать с любой вершины — вы обязательно возвратитесь в исходную точку. Вот одно из возможных решений (рис. 166).

— А знаете, это интересный род головоломок! Дайте мне десяток подобных задач, я подумаю о них на досуге.

— Извольте.

Рис. 167.

Рис. 168.

Рис. 169.

Рис. 170.

Рис. 171.

Рис. 172.

Рис. 173.

Рис. 174.

Рис. 175.

Рис. 176.

Решения задач 161-170

Из фигур, представленных на рис. 167–176, безусловно, можно начертить непрерывной линией фигуры с рис. 168, 170, 171, 172–176. В этих фигурах во всех точках пересечения сходится четное число линий, следовательно, каждая точка может быть начальной, она же будет и конечной. Выполнение фигур показано на рис. 177–185.

Рис. 177.

Рис. 178.

Рис. 179.

Рис. 180.

Рис. 181.

Рис. 182.

Рис. 183.

Рис. 184.

Рис. 185.

Фигура на рис. 167 имеет только две «нечетные» точки — те места, где ручка молотка входит в головку: в этих точках сходится по 3 линии. Поэтому фигуру можно начертить непрерывной линией только в том случае, если начать из одной «нечетной» точки и кончить в другой.

То же относится и к фигуре на рис. 169: она содержит только две «нечетные» точки, m и n. Они и будут начальной и конечной точкой при черчении.

Фигура на рис. 172. имеет более двух «нечетных» точек, а потому ее совершенно невозможно начертить одной непрерывной линией.

  • Читать дальше
  • 1
  • ...
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: