Сурдин Владимир Георгиевич
Шрифт:
Эти струи были открыты на изображениях, переданных зондом «Кассини» в момент, когда, пролетая мимо Энцелада, он получил команду посмотреть назад, в направлении Солнца. Энцелад при этом был виден аппарату с ночной стороны, а небольшая часть его дневного полушария выглядывала из ночной тьмы как тонкий полумесяц. Устраивая наблюдение при «контровом» освещении, ученые ожидали, что рассеивающие солнечный свет частицы, выброшенные с поверхности Энцелада, будут хорошо видны. И действительно, на полученных изображениях видно несколько струй, вылетающих из тех мест, где раньше были обнаружены разломы поверхности – «тигровые полосы». Здесь поверхность выглядит в геологическом смысле намного моложе, чем в соседних областях. В июле 2005 г. «Кассини» обнаружил увеличенный поток частиц из этих областей, а в ноябре 2005 г. ему удалось сфотографировать и сами «гейзеры». «Кассини» регулярно сближается с Энцеладом; 9 октября 2008 г. он прошел на расстоянии всего 25 км от поверхности и прямым анализом доказал, что фонтаны водяные. В составе пара 91 % воды, 4 % азота, 3,2 % двуокиси углерода и 1,7 % метана.
Рис. 8.17. Значительная часть фонтанирующей воды покидает Энцелад и распределяется вдоль его орбиты, образуя кольцо Е Сатурна. Фото: «Кассини».
Рис. 8.18. Ледяные гейзеры в южной полярной области Энцелада. Некоторые из выбросов видны даже на ночной стороне. Фото: «Кассини».
Рис. 8.19. Энцелад, несмотря на небольшой диаметр (504 км), имеет сферическую форму и вполне может считаться планетой-спутником. В его южной полярной области (на снимке внизу) видны длинные разломы коры – «тигровые полосы» (tiger stripes). Их температура выше, чем у окружающей ледяной поверхности: здесь из недр выходит жидкая вода. Фото «Кассини».
На переданных аппаратом снимках мы видим мелкие частицы льда, в который превратилась вода, вырвавшись из-под поверхности Энцелада в космический вакуум. Вероятно, эти струи выбрасываются из «карманов», заполненных водой при температуре около О °С. Вскипая при уменьшении давления, вода стремительно расширяется и выплескивается наружу, как в обычных гейзерах на Земле. Большая ее часть, разумеется, падает на поверхность и замерзает. Но поскольку вторая космическая скорость на поверхности Энцелада всего около 240 м/с, часть выброшенного вещества устремляется в космос.
Эта находка уникальна тем, что прямо демонстрирует присутствие жидкой воды у поверхности небесного тела. Уже многие годы обсуждается подповерхностный океан, обнаруженный на спутнике Юпитера Европе. Но нужно помнить, что существование этого океана пока лишь подозревается: на Европе о наличии внутреннего океана свидетельствуют геологические особенности поверхности, тогда как на Энцеладе прямо наблюдается вода, выбрасываемая из источников, близких к поверхности. До недавних пор астрономы знали только три объекта, где наблюдается активный вулканизм: это Ио (спутник Юпитера), Земля и в незначительной степени Тритон (спутник Нептуна). Четвертым членом этого «закрытого клуба» стал Энцелад с его водно-ледяными вулканами, которые принято теперь называть криовулканами. Впрочем, точнее было бы называть эти фонтаны гейзерами по аналогии с их земными прототипами.
Существование воды на Энцеладе открывает перед исследователями заманчивые перспективы. Данные, переданные «Кассини», убеждают в том, что запасы жидкой воды находятся на глубине всего нескольких десятков метров под поверхностью Энцелада, и они должны быть намного доступнее, чем, например, внутренний океан Европы, скрытый многокилометровой толщей льда. Жидкая вода на Энцеладе открывает перспективы для поиска внеземной жизни. Фактически это открытие существенно раздвигает границы, в пределах которых в Солнечной системе существуют условия, приемлемые для живых организмов. Наряду с Титаном Энцелад теперь стал приоритетным объектом исследований в системе Сатурна и одним из самых притягательных мест в Солнечной системе для экзобиологов.
Эта книга подошла к концу, но разведка далеких планет продолжается. А если говорить серьезно – она еще только начинается. Невозможно даже представить себе, какие открытия ждут нас впереди. Где еще мы побываем в XXI веке? Кто знает… До встречи, друзья!
9. Путевой блокнот
Толковый словарик
АДАПТИВНАЯ ОПТИКА (АО) – методика исправления в реальном времени атмосферных искажений астрономического изображения. Проходя сквозь неоднородную и нестабильную атмосферу, плоский волновой фронт света теряет свою форму, отчего изображение в телескопе становится нерезким и дрожащим. Для восстановления плоской формы волнового фронта обычно используется небольшое «мягкое» зеркало, управляемое компьютером и с высокой частотой (до 2 кГц) изменяющее свою форму. Управляющая программа с помощью детектора волнового фронта анализирует изображение одиночной звезды и, регулируя форму мягкого зеркала, добивается того, чтобы изображение этой звезды имело идеальный, точечный вид. Если это удается, то автоматически становятся более четкими изображения и всех других объектов, наблюдаемых вблизи этой звезды в пределах области изопланатизма, т. е. всех объектов, лучи света от которых проходят сквозь те же ячейки атмосферной неоднородности, что и лучи опорной звезды. Для работы системы АО нужна яркая звезда, а такие редко встречаются на небе. Поэтому в некоторых системах АО укрепленный на телескопе лазер создает в верхних слоях атмосферы «искусственную звезду» – маленькое яркое пятно, постоянно присутствующее в поле зрения телескопа.
АСТРОНОМИЧЕСКАЯ ЕДИНИЦА (а. е.) – единица длины, практически равная среднему расстоянию между центрами Земли и Солнца. 1 а. е. = 149 597 870 км. Обычно используется в астрономии при указании расстояний между объектами Солнечной системы и между звездами в двойных системах.
ДВОЙНАЯ ПЛАНЕТА (double planet) – два тела планетного типа, сравнимых по массе и обращающихся вокруг общего центра масс. Как пример двойной планеты обычно указывают систему Земля-Луна, а как пример двойной карликовой планеты – систему Плутон – Харон. Некоторые авторы считают необходимым признаком двойной планеты расположение барицентра системы вне тел планет. Этому требованию не удовлетворяет система Земля – Луна, поскольку ее барицентр находится внутри Земли. Однако с физической точки зрения такое требование едва ли можно считать оправданным, поскольку факт двойственности прежде всего проявляется во взаимном влиянии тел, а выход барицентра из-под поверхности планеты происходит при удалении компонентов друг от друга, уменьшающем их взаимное влияние. Как раз это и происходит в системе Земля – Луна. Термин «двойная планета» пока не формализован и в научной литературе официально не принят, хотя нередко используется.
ЗВЕЗДНАЯ ВЕЛИЧИНА – «ступенька» в шкале яркости небесных светил: при увеличении звездной величины на 1 яркость звезды уменьшается примерно в 2,5 раза. Это обратная шкала: когда яркость звезды уменьшается, значение звездной величины возрастает. Очень яркие звезды, такие как Вега и Арктур, имеют блеск примерно нулевой звездной величины; в 2,5 раза менее яркие, например Альдебаран и Капелла – звезды первой величины, и т. д. В Ковше Большой Медведицы каждая из звезд имеет блеск около 2 звездной величины. Для краткости записи вместо слов «звездная величина» астрономы ставят вверху за цифрой индекс т (от лат. magnitudo величина). Например, фраза «звезда второй звездной величины» выглядит как «звезда 2m». Несколько исключительно ярких звезд имеют отрицательную звездную величину. Это следует понимать так: звезда – 1m в 2,5 раза ярче звезды 0m.