Шрифт:
12.4. Особенности литья сплавов платиновой группы
Плавку платины и ее сплавов ведут в тигельных индукционных высокочастотных печах с набивной футеровкой из оксида кальция, магнезита или оксида циркония. Тигли для плавки изготовляяют из тех же огнеупоров. Шамотовые и графитовые тигли не пригодны для плавки платиновых сплавов из-за образования хрупкого силицида платины и насыщения расплава углеродом. В тех случаях, когда необходимо получать изделия, не содержащие примеси кальция или магния, плавку осуществляют в тиглях из оксида тория или оксида циркония. Плавку проводят в окислительной атмосфере без применения флюса.
В качестве шихтовых материалов используют губчатую платину, спрессованную в брикеты, или скрап. Легирующие компоненты вводят в расплавленную платину при 1850–1900 °C. Несмотря на слабое взаимодействие платины с печными газами, плавку ведут форсированно. Раскисление расплава перед заливкой не производят из-за риска загрязнения сплавов избытком раскислителя.
Заливку платиновых сплавов ведут с небольшим перегревом расплава в подогретые стальные или туфовые (известковые) формы.
Плавку палладия ведут в окислительной атмосфере в магнезитовых тиглях. При плавке в кварцевых тиглях особенно вредна восстановительная атмосфера, так как она способствует загрязнению расплава кремнием. При содержании в расплаве 0,003 % кремния в отливках появляются горячие трещины. Перед разливкой палладий раскисляют 0,1 % алюминия. Флюс при плавке не применяют.
Для плавки чаще всего используют индукционные печи с магнезитовой футеровкой и окислительной атмосферой. В качестве раскислителей используют алюминий и силикокальций.
При плавке благородных металлов и сплавов особое значение придается созданию условий, обеспечивающих их минимальные безвозвратные потери. В частности, не допускаются излишне высокий перегрев расплавов над температурой ликвидуса и длительная выдержка при температурах литья.
13. Термическая обработка ювелирных сплавов
Основной вид термической обработки ювелирных сплавов – рекристаллизационный отжиг. Он назначается или как промежуточный этап между операциями холодной пластической деформации, или как заключительный – для того, чтобы повысить пластичность и уменьшить прочность сплава. Температура рекристаллизационного отжига назначается на 100–150 °C выше температуры порога рекристаллизации, которая, в свою очередь, зависит от состава сплава и степени холодной пластической деформации.
К некоторым сплавам на основе серебра, золота и платины применяется упрочняющая термообработка: закалка и старение.
13.1. Термическая обработка сплавов на основе серебра
Термически обрабатываются сплавы системы Ag – Си, так как медь ограниченно растворима в серебре и ее растворимость изменяется с температурой.
Режим термообработки состоит в закалке сплава с температурой 700 °C в воде с последующим старением.
Оптимальных условий старения достигают путем выдержки при 300 °C и медленного охлаждения. Наибольшее значение твердости при старении происходит у сплава с 92,5 % Ag. После старения твердость увеличивается в 2,5–3 раза (до 1600 НВ), у заэвтектических сплавов эффект незначителен.
Упрочнение сплавов происходит за счет выделения из перенасыщенного твердого раствора Ag – Pt мелкодисперсных частиц β-фазы.
13.2. Термическая обработка сплавов на основе золота
Двойные сплавы золото – серебро термически не упрочняемые, так как серебро и золото неограниченно растворимы в твердом состоянии.
Тройные сплавы системы Au – Ag – Си упрочняются термической обработкой. Эффект упрочнения в результате закалки и старения зависит от состава сплава.
В связи с тем что медь и серебро ограниченно растворимы, сплавы системы Au – Ag – Си двухфазны при комнатных температурах, если содержат до 25 % меди и серебра в сумме, т. е. сплавы до 750-й пробы.
Сплавы 333-й пробы закаливаются из области гомогенного твердого раствора. Температура закачки – 650 °C, охлаждение – вода. Температура старения 250–300 °C (табл. 9.1). Время старения 10–15 мин. Упрочнение происходит за счет распада пресыщенного твердого раствора и образования мелкодисперсных выделений вторичных фаз.
Сплавы 583-й и 585-й пробы. Значительное упрочнение наблюдается и в сплавах 583-й и 585-й проб (табл. 9.1). Содержание меди в золоте 583-й и родственной ей 585-й пробы изменяется от 3,25 до 32,5 % при соответствующем содержании серебра от 38,25 до 9,0 %. Разрез тройной диаграммы состояния для сплавов 585-й пробы показан на рис. 7.4. После затвердевания все сплавы имеют однофазную структуру твердого раствора. При температурах ниже 600 °C происходит распад с выделением частиц второй фазы. В равновесном состоянии структура сплавов а + β – твердые растворы. Температура начала распада твердого раствора зависит от состава, и она максимальна для сплава, содержащего 21 % меди, и составляет 660 °C. Термическая обработка этих сплавов состоит из закалки из однофазной области, от температуры 700–750 °C, и последующего старения. Температура старения сплава ЗлСрМ585-188, содержащего 21 % Си, – 450 °C, остальных – 300 °C (табл. 9.1). Упрочнение сплавов золота этой пробы происходит за счет образования мелкодисперсных выделений β-фазы.
Твердость после кратковременного низкотемпературного отжига сплавов 583-й пробы значительно повышается, если отжигу подвергать не закаленный, а деформированный металл. После дисперсионного твердения при 280 °C в течение 10 мин. твердость по Виккерсу HV закаленного сплава составляет 1850 МПа, а деформированного с обжатием 75 % – 3050 МПа.
Твердость сплавов после низкотемпературного отжига зависит от продолжительности температуры отжига. В сплавах 583-й пробы первоначальный рост твердости сменяется ее уменьшением, которое происходит тем скорее и тем резче, чем выше температура отжига.