Шрифт:
Ландау был первым физиком, заглянувшим в это окно.
Мы уже говорили о том, что амплитуда нулевых колебаний атомов гелия сопоставима с межатомными расстояниями. Следовательно, в этом случае нет смысла говорить об отдельных атомах, а нужно рассматривать гелий II как единую систему взаимодействующих частиц.
Из квантовой механики известно, что такая система может поглощать и отдавать энергию только определенными порциями — квантами.
По мысли Ландау, такие поглощенные телом кванты ведут себя как особые частицы, движущиеся в объеме тела. Они получили название — квазичастицы (дословный перевод этого слова: «почти частицы»).
Не вдаваясь в подробности, заметим, что количество квазичастиц в теле тем больше, чем больше энергия тела, или, что то же самое, чем выше его температура.
Такое положение сохраняется при достаточно низких температурах, пока число квазичастиц невелико и их можно рассматривать как газ.
В обычных жидкостях происходит все иначе: они затвердевают задолго до того, как их возбуждения могут быть описаны с помощью газа квазичастиц.
Из теории Ландау следует, что вплоть до определенной скорости движения в сверхтекучем гелии II не могут образовываться новые квазичастицы, а следовательно, не может изменяться его энергия. Поэтому до достижения этой скорости гелий II должен течь как идеальная, невязкая, то есть сверхтекучая жидкость.
Произведя критический анализ экспериментальных данных, Ландау пришел к совершенно парадоксальному на первый взгляд выводу.
Гелий II мыслится как совокупность двух жидкостей, которые могут двигаться независимо. Словно привидение в старинном замке, они проходят одна через другую, не испытывая при этом никакого трения.
Читатель, разумеется, должен иметь в виду, что такая «двухжидкостная модель» гелия II является лишь удобным способом описания происходящих в нем явлений. Можно также сказать, что гелий II — это одна жидкость, которая способна совершать два движения одновременно.
— Час от часу не легче! — может воскликнуть в этом месте наш читатель.
Как это так — совершать сразу два движения: одновременно двигаться и оставаться на месте?
Такое могло произойти разве только с человеком рассеянным с улицы Бассейной — героем известного стихотворения С. Маршака. Вскочив в отцепленный вагон, он воображал, что путешествует, на самом деле не сдвинувшись с места.
Выходит, что в этом удивительном микромире можно двигаться, оставаясь в «отцепленном вагоне».
Впрочем, не следует забывать, что наши наглядные представления являются отражением того, с чем мы сталкиваемся в обыденной жизни, а квантовые явления имеют место в недоступном нашему непосредственному восприятию микромире. Поэтому здесь возможна лишь грубая аналогия.
Каждое из двух происходящих в гелии II движений сопровождается переносом определенной массы жидкости, причем сумма этих масс равна истинной массе жидкости. В этом смысле можно говорить о двух составляющих (компонентах) гелия II. Вместе с тем надо твердо усвоить, что никакого разделения атомов гелия на две категории нет.
Каждое из двух движений является коллективным свойством большого количества одних и тех же атомов жидкости.
Обе компоненты резко отличаются друг от друга своими свойствами. Одна из них не обладает вязкостью.
Ландау назвал ее сверхтекучей.
Вторая компонента, называемая нормальной, представляет собой газ квазичастиц. Квазичастицы при движении взаимодействуют между собой и со стенками сосуда.
Следовательно, нормальная компонента обладает вязкостью. Она ведет себя как обыкновенная жидкость.
Другое, не менее важное различие заключается в том, что только нормальная компонента при своем движении переносит тепло.
В самом деле, единственными носителями тепловой энергии в гелии II являются квазичастицы. Что касается сверхтекучего движения, то оно по своей природе не связано с переносом тепла.
Таким образом, в гелии II тепло как бы приобретает самостоятельное существование, отрываясь от остальной массы жидкости.
При понижении температуры уменьшается количество квазичастиц, содержащихся в жидкости, а следовательно, увеличивается доля сверхтекучей компоненты, и при температуре абсолютного нуля весь гелий II должен перейти в сверхтекучее состояние.
С повышением температуры количество квазичастиц возрастает, и вместе с тем увеличивается масса, связанная с нормальным движением. Наконец, при некоторой температуре эта масса сравнивается с массой жидкости. При этом сверхтекучее движение исчезает, и гелий II переходит в гелий I, который ведет себя как обычная жидкость.
Эта теория Ландау объяснила удивительное поведение квантовой жидкости гелия II.
В 1962 году Ландау была присуждена Нобелевская премия по физике «За пионерские теории конденсированных сред, особенно жидкого гелия».