Шрифт:
Примечательно, что ниобий долгое время считался «отщепенцем» среди металлов. Его относили к сверхпроводникам второго рода. Однако, когда удалось получить особо чистый образец ниобия, он занял свое «законное» место среди сверхпроводников первого рода.
Эффект Мейснера обусловлен положительным поверхностным натяжением между сверхпроводящим и нормальным состояниями в металле. Магнитное поле выталкивается из толщи образца, так как для образования большей поверхности раздела между сверхпроводящей и нормальной областями понадобилась бы значительная энергия.
Наоборот, отсутствие эффекта Мейснера должно указывать на отрицательное поверхностное натяжение. При этом условии сверхпроводник может как угодно разделяться на сверхпроводящие и нормальные области.
Поведение в магнитном поле сверхпроводников второго рода оказалось удивительным.
При увеличении внешнего магнитного поля, начиная с нулевого значения, магнитное поле первоначально не проникает в толщу образца.
Достигнув некоторого значения Н к1, называемого нижним критическим полем, сплав переходит в смешанное состояние. При этом магнитное поле проникает в сверхпроводник постепенно, в виде сгустков силовых линий, называемых абрикосовскими вихрями.
Внутри сгустка сверхпроводимость разрушается, но каждый сгусток окружен кольцевыми сверхпроводящими токами. Отсюда и название — вихри.
Эти вихри — квантовые. Магнитный поток, содержащийся в каждом вихре, строго равен одному кванту.
Итак, сверхпроводник оказывается пронизанным вихревыми нитями. Эти вихри, оси которых ориентированы в направлении силовых линий магнитного поля, образуют треугольную решетку. При этом в пространстве между вихрями вещество остается сверхпроводящим. Вместе с тем эффект Мейснера не проявляется. Магнитное поле в виде вихревых нитей проникает в толщу сверхпроводника.
При увеличении поля, начиная с нижнего критического поля, возрастает число вихревых нитей, и они сближаются. Соответственно увеличивается объем, занятый нормальными областями. Когда поле возрастает до величины Н к2, называемой верхним критическим полем, сверхпроводимость полностью разрушается. Вещество переходит в нормальное состояние.
Многочисленные экспериментальные исследования, проведенные в нашей стране и за рубежом, с полной достоверностью подтвердили теорию Абрикосова.
Наиболее простой эксперимент, демонстрирующий образование магнитных вихрей при переходе сверхпроводника в промежуточное состояние, заключается в том, что плоская поверхность испытываемого образца покрывается ферромагнитным порошком.
Силовые линии магнитного поля пронизывают вихревые участки и выходят из образца в хех точках поверхности, которые соответствуют положениям вихревых нитей. Ферромагнитный порошок притягивается полем и скапливается в окрестностях этих точек. При этом четко просматривается треугольная решетка вихревых линий.
Что же происходит, когда через образец, содержащий вихревую структуру, пропускается электрический ток?
Известно, что магнитное поле действует на движущиеся заряды (токи) с силой Лоренца. С такой же силой ток действует и на вихревые нити, которые приходят в движение.
Вихри Абрикосова в сверхпроводнике второго рода. Покрыв поверхность сверхпроводника ферромагнитным порошком, можно наблюдать периодическую треугольную решетку вихревых нитей. Частички, порошка собираются в тех местах, где выходят силовые линии.
При этом нормальная фаза (напомним, что в области вихрей вещество находится не в сверхпроводящем состоянии) движется сквозь сверхпроводящие области. Возникает потеря энергии. Критический ток в таких сверхпроводниках второго рода, начиная с нижнего критического поля, становится равен нулю.
Можно ли остановить движение вихревых нитей?
Оказывается, для этого сверхпроводящий образец должен, например, содержать неоднородности. Вихревые нити притягиваются к таким неоднородностям и задерживаются на них.
Явление получило название — пиннинг (от английского: pinning — закрепление).
Отдельные вихреватые нити, закрепляясь на неоднородностях, взаимодействуют с другими вихревыми нитями и останавливают их движение.
С увеличением силы тока, протекающего через образец, увеличивается и сила, действующая на вихрь. Когда эта сила становится достаточной для того, чтобы преодолеть закрепление, вихревые нити приходят в движение.
В сверхпроводниках второго рода, содержащих неоднородности, образованные, например, в результате пластической деформации, критический ток относительно большой. Такие образцы получили название жестких сверхпроводников.