Шрифт:
Рис. 49. Прямоточный воздушно-реактивный двигатель внутри «пуст». На этом шуточном рисунке изображено, как механик «чистит» двигатель артиллерийским банником
Понятно, что «пустой» прямоточный воздушно-реактивный двигатель несравненно легче, чем турбореактивный двигатель того же диаметра. Это имеет огромное значение, ибо если в авиации вес всегда был злом, то вдесятеро большим злом он становится при сверхзвуковых скоростях полета, когда каждый лишний грамм веса приводит к ощутительному увеличению мощности, потребной для осуществления полета.
Чтобы познакомиться с тем, как работает прямоточный двигатель, воспользуемся знакомым нам приемом — поместим двигатель, имеющий прозрачные стенки, в искусственные цветные воздушные океаны — зеленый и синий. Напомним еще раз, что воздух этих океанов имеет свойство менять свою окраску при изменении скорости движения и давления: с их увеличением цвет воздуха темнеет. При этом снова сделаем двигатель неподвижным, а воздух движущимся относительно него со скоростью, равной скорости полета. Так как мы знакомимся с дозвуковым двигателем, то предполагается, что скорость полета не превосходит скорости звука.
Мы, конечно, будем отмечать только основные явления в работающем двигателе, Конструктивно прямоточный двигатель относительно прост, но совсем не так просты протекающие в нем рабочие процессы. При их изучении ученым приходится преодолевать немало трудностей.
Представим себе прямоточный воздушно-реактивный двигатель в зеленом океане. Сначала проследим за изменением скорости воздуха, протекающего через двигатель. Пока скорость полета невелика, воздушный океан, набегающий на двигатель, имеет светлозеленый цвет. Воздух входит внутрь двигателя через передний конус и выходит из нею через задний конус. Какова роль этих конусов? Что изменится в работе двигателя, если мы станем менять их форму, делая их то более длинными, то короткими, т. е. изменяя площадь сечения для прохода воздуха? А нельзя ли вовсе обойтись без конусов?
Чтобы дать ответ на эти вопросы, очень важные для понимания самой сути работы прямоточного воздушно-реактивного двигателя, займемся исследовательской работой. Будем проводить эксперименты в наших цветных океанах, благо эти «эксперименты» не связаны с такими трудностями, какие встречаются в действительных условиях исследования двигателей.
Для успешного проведения испытаний соорудим специальную установку, показанную на рис. 50. Из трубы большого диаметра вытекает воздух, который затем поступает в наш испытуемый двигатель. Скорость движения воздуха, подаваемого мощным вентилятором, можно менять путем изменения числа оборотов вентилятора; этим мы можем имитировать изменение скорости полета. Чтобы можно было измерить тягу, развиваемую двигателем, укрепим его на испытательном станке, устройство которого легко понять из рисунка.
Рис. 50. На этой установке мы будем проводить наши «исследования» прямоточного воздушно-реактивного двигателя
Для того чтобы не произошло ошибки при измерении тяги, нам придется пойти еще на одно ухищрение.
Поток воздуха, обтекающего двигатель снаружи, естественно, действует на его внешнюю поверхность и создает силу, направленную против полета. Вследствие этого измеренная тяга окажется меньше действительной. Чтобы избавиться от вредного влияния внешнего потока, поставим перед двигателем щиток, который отклонит воздушный поток, так что он не будет обтекать двигатель снаружи.
Теперь, когда все подготовительные работы закончены, можно начинать наш эксперимент. Не запуская двигатель (не включая подачу топлива), запустим вентилятор. Из трубы начнет вытекать струя воздуха — она будет иметь более темный цвет, чем окружающий нашу испытательную установку светлозеленый океан; это понятно — океан неподвижен, а воздух в струе движется.
Как только струя воздуха поступит внутрь двигателя, с ней сейчас же начнут происходить изменения. Чем дальше продвигается воздушный поток по переднему расходящемуся конусу двигателя, тем светлее становится его цвет; это свидетельствует о том, что скорость потока уменьшается. В синем океане мы увидели бы противоположную картину: в нем по мере движения внутри переднего конуса цвет воздуха становится все более темным; следовательно, давление его увеличивается. Так оно и должно быть, ибо когда скорость воздуха в потоке уменьшается, то давление его увеличивается — таков вывод закона Бернулли.
В этом и заключается назначение входного конуса двигателя — в нем осуществляется торможение воздушного потока и сжатие воздуха. Следовательно, именно эта часть прямоточного воздушно-реактивного двигателя, называющаяся диффузором, и выполняет функции компрессора. Чтобы сжатие воздуха происходило без больших потерь, угол конусности диффузора должен быть возможно меньшим; поэтому диффузор обычно имеет большую длину.
В цилиндрической средней части двигателя состояние воздуха не изменяется, так как сгорания пока не происходит и воздух движется здесь с постоянной скоростью, при неизменном давлении.
Изменения начнутся снова, как только воздух поступит в выходной конус двигателя. В зеленом океане цвет потока в этом конусе будет темнеть, а в синем, очевидно, светлеть. Это значит, что в выходном конусе скорость движения воздуха увеличивается, а давление его падает. Значит, в этой части двигателя воздух расширяется; работа расширения затрачивается на разгон потока. Именно таково назначение этой важной части двигателя, называющейся реактивным соплом. Без сопла скорость истечения и, следовательно, тяга двигателя будут небольшими.