Вход/Регистрация
Эмбрионы, гены и эволюция
вернуться

Кофмен Томас К

Шрифт:

Результаты сравнения альбуминовых расстояний и способности производить жизнеспособное гибридное потомство выявили резкое различие между лягушками и млекопитающими. Пары видов млекопитающих, относящихся к таким группам, как приматы, хищные, непарнокопытные и парнокопытные, и дающих жизнеспособные гибриды, были очень близки в смысле иммунологического расстояния по альбуминам. Диапазон этих расстояний лежал в пределах от 0 до 10 ед. со средней, равной 3. Этот довольно узкий диапазон резко отличался от того диапазона расстояний - до 90 ед., - при которых виды лягушек все еще давали жизнеспособные гибриды; для лягушек среднее расстояние было равно 37 ед. Если бы млекопитающие с такими большими иммунологическими расстояниями, как наблюдаемые у лягушек, могли тоже давать жизнеспособные гибриды, то стали бы возможны скрещивания между человеком и обезьяной, собакой и тюленем или овцой и жирафом. Вилсон и его сотрудники высказали мнение, что такие скрещивания невозможны, потому что у млекопитающих (в отличие от лягушек) произошли быстрые эволюционные изменения в системах, регулирующих экспрессию генов в процессе развития. Из-за того что альбуминовые молекулярные часы изменялись у лягушек и млекопитающих с одинаковой скоростью, скорость эволюции регуляторных систем, участвующих в процессе развития, должна быть у млекопитающих в 10 раз выше, чем у лягушек.

Эта гипотеза привлекательна, однако доказательств в ее пользу пока нет. Главное возможное осложнение проистекает из того факта, что у млекопитающих зародыши непосредственно взаимодействуют с матерью через плаценту. Таким образом у гибридов, синтезирующих белки, отличные от белков материнского вида, может произойти иммунологическое отторжение. Лягушки, а также птицы, которые, как показали Прагер (Prager) и Вилсон, способны, подобно лягушкам, давать жизнеспособные гибриды при скрещиваниях между видами, значительно дивергировавшими по белкам, отличаются от млекопитающих тем, что они развиваются из яйца, совершенно изолированного от иммунной системы матери. В экспериментах на млекопитающих, у которых материнская иммунная система была подавлена, не наблюдалось повышения выживаемости, так что это возражение также остается спорным.

Отсутствие корреляции между молекулярной и морфологической эволюцией наблюдается также и у других организмов. Например, было обнаружено (Avise et al.), что у гольянов, у которых происходило быстрое видообразование, эволюция белков протекала с такой же скоростью, как у солнечных окуней, у которых видообразование происходило медленно.

Как могла эволюция регуляторных систем совершаться независимо от замены нуклеотидов в структурных генах? Вилсон и его сотрудники высказали мнение, что морфологическая эволюция происходит за счет перераспределения генов, а не за счет точковых мутаций. Термин «перераспределение генов» объединяет ряд разнообразных процессов, часть из которых очень трудно выявить. События, происходящие на уровне кариотипа, такие как изменения числа хромосом или хромосомных плеч, отражают расщепление существующих хромосом, приводящее к увеличению их числа, или слияние хромосом с уменьшением их числа, или другие события, в частности инверсии или уменьшение количества гетерохроматина. Вилсон, Буш, Кэйз и Кинг (Wilson, Bush, Case, King) рассматривают эти изменения как «внешние выражения явления перераспределения генов».

Остается неясным, насколько же точно внешне заметные изменения кариотипа отражают перераспределения генов, которые предположительно играют важную роль в морфологической эволюции? Вилсон и Буш и их сотрудники попытались выяснить зависимость между хромосомными изменениями и морфологической эволюцией, сравнивая скорости кариотипических и морфологических изменений у плацентарных млекопитающих, рептилий, амфибий и рыб. Хотя быстрая морфологическая эволюция протекает независимо от молекулярной эволюции, она сильно коррелирована с быстрыми изменениями в числе хромосом. Скорость изменения числа хромосом у млекопитающих в 10-20 раз выше скорости, вычисленной для морфологически более консервативных амфибий, рептилий и рыб. Интересно указать, что аналогичная несоразмерность существует между млекопитающими и моллюсками, для которых вообще характерна низкая скорость морфологических изменений. Это позволяет установить некую общую корреляцию, согласно которой скорость изменения хромосом ниже в группах, эволюционирующих быстрее. Буш и его сотрудники усовершенствовали эти измерения с целью показать, что фактически скорость эволюции хромосом тесно коррелирует со скоростью видообразования. На основании этих результатов было сделано предположение, что эволюция хромосом может действительно быть тем механизмом, который непосредственно обеспечивает перестройки генома, имеющие важное значение для морфологической эволюции. Следует, однако, отметить, что из этого обобщения имеются исключения, в чем можно убедиться на примере двух недавних исследований. Сравнения скоростей эволюции кариотипа среди мелких карповых, которые провел Голд (Gold), показывают, что, вопреки ожиданиям, изменения хромосом происходят гораздо медленнее у рода Notropis, характеризующегося быстрым видообразованием, чем у других родов того же семейства с более медленным видообразованием. Скорости эволюции кариотипа могут сильно варьировать также и у млекопитающих. Как установили Бэйкер и Бикхэм (Baker, Bickham), у летучих мышей, хотя эта группа в целом морфологически консервативна, изменения хромосом происходили с очень разной скоростью; у некоторых летучих мышей не обнаружено никаких изменений по сравнению с кариотипом, принятым за примитивный, тогда как у других скорость изменений была наивысшей из всех когда-либо описанных для какой-либо группы животных. Скорости кариотипической эволюции не соответствуют ходу молекулярных часов, и они не обязательно соответствуют скоростям морфологической эволюции. Мы считаем, что реорганизация генома имеет решающее значение для морфологической эволюции. Однако такие изменения генома происходят при помощи гораздо более тонких механизмов, чем крупные хромосомные перестройки, и изменения на уровне хромосом не являются необходимым компонентом видообразования и морфологического изменения.

Типы видообразования

До сих пор наше внимание было сосредоточено главным образом на скоростях молекулярной и морфологической эволюции, и нам удалось выбрать количественные показатели, приемлемые для нескольких эволюционных процессов. Однако такие показатели, как скорость изменения размеров в дарвинах или скорости эволюции ДНК в числе замен нуклеотидов за год, могут создать иллюзию непрерывности - градуализма - даже в тех случаях, когда на самом деле имел место прерывистый ряд событий. Если эволюция обычно происходит прерывистым образом, то возникает необходимость определить природу процесса, вызывающего быстрое и, возможно, радикальное эволюционное изменение. Согласно наиболее прочно укоренившемуся мнению, опирающемуся на популяционную биологию и генетику, решающую роль в эволюции играет видообразование.

В этом контексте вид определяется как группа скрещивающихся между собой организмов, имеющих общий генофонд. А от такого определения неотделимы процесс и механизм, с помощью которых происходит видообразование. Если члены данного вида имеют общий генофонд, то события, приводящие к разделению одного вида на два, должны выделять из этого генофонда отдельные части и препятствовать обмену генетической информацией между двумя отдельными популяциями. Поэтому нам необходимо выяснить природу механизмов, разделяющих зарождающиеся виды, - природу генетических изменений, их количество, необходимое для видообразования, и необходимое на это минимальное время. Однако, прежде чем очертя голову устремиться к этой нетронутой целине, следует сделать два предостережения. Как совершенно справедливо отметил Буш, никто никогда не наблюдал процесс видообразования от начала и до конца, так что само исследование видообразования представляет собой «науку ad hoc». To, что мы наблюдаем в природе, это только отдельные моменты, ряд отдельных кадров непрерывного процесса, и, располагая лишь этими мимолетными впечатлениями, мы вынуждены воссоздавать весь остальной процесс и лежащий в его основе механизм. Это несколько напоминает метод Шерлока Холмса, который приводил в изумление доктора Ватсона: все прошлое будущего клиента выводилось из того, как он хромает и какие курит сигары. Как мы сможем убедиться, процесс видообразования протекает у разных организмов по-разному, и любые относящиеся к нему обобщения даются с трудом. Справедливости ради следует упомянуть о том, что в литературе описано несколько случаев лабораторного «видообразования». Эти случаи по большей части возникали в результате экспериментального или интуитивного возведения преград, препятствовавших скрещиванию между особями, принадлежащими к одному и тому же виду. Остается выяснить, однако, в какой мере эти лабораторные события соответствуют тому, что происходит в природе.

Другое предостережение относится к различию между адаптивными изменениями в пределах данной популяции и разного рода изолирующими механизмами, вызывающими расщепление, или кладогенез. Каждая природная популяция обладает известным запасом изменчивости, будь то хромосомный, морфологический или биохимический полиморфизм. Можно также показать, что эти кариотипические, морфологические или ферментные признаки изменяются во времени, со сменой времен года, или в пространстве, например с высотой местности. Классическим примером адаптивного изменения этого типа служит индустриальный меланизм у пяденицы Biston betularia. В этом особом случае в течение XIX в. в результате развития промышленности и загрязнения среды угольной пылью и копотью в популяциях этой бабочки в центральных графствах Англии черная морфа стала преобладать над серой. Пяденицы днем отдыхают на стволах деревьев, потемневших от копоти, а поэтому птицы лучше различают на них серых бабочек и выедают их сильнее, чем черных. Конечно, в популяции произошло изменение, однако она при этом не распалась на две отдельные репродуктивно изолированные группы. Черные и серые бабочки продолжают спариваться и производят жизнеспособное плодовитое потомство. Другой пример - полиморфизм по хромосомным инверсиям у Drosophila pseudoobscura, так изящно проанализированный Добржанским и его учениками. В третьей хромосоме этих мух содержится много различных генных последовательностей, перестроенных по сравнению с произвольно выбранной стандартной последовательностью. Во многих локальных популяциях содержится по нескольку таких инвертированных последовательностей. Частота каждой данной последовательности в популяции изменяется, однако, на протяжении всего сезона, когда эти насекомые растут. Частота инверсий изменяется также с изменением высоты местности над уровнем моря, так что на разных высотах в популяции преобладают различные инверсии, т.е. наблюдается клинальная изменчивость их частоты. И в этом случае все мухи, несущие различные хромосомные последовательности, интерфертильны, а поэтому они не относятся к разным видам. Создается впечатление, что изменения частоты генов или структуры хромосом, происходящие в пределах одной популяции и не сопровождающиеся видообразованием, возможно, играют известную роль в поддержании адаптированности популяции, но не играют существенной роли в эволюционном процессе.

Границы видов, особенно видов животных, устанавливаются репродуктивной изоляцией между ними. Это разделение поддерживается разнообразными изолирующими механизмами, которые можно разбить на две широкие категории - презиготические и постзиготические, в зависимости от того, подавляется ли передача генетической информации до или после оплодотворения. Презиготические преграды служат для предотвращения слияния гамет и могут сводиться всего лишь к экологическим различиям между двумя предполагаемыми брачными партнерами. Если две группы животных экологически изолированы либо реальным физическим расстоянием, либо тем, что они занимают достаточно различные ниши в одной и той же общей области, то скрещивание между ними маловероятно. Второй тип наблюдаемой презиготической изоляции-это временная изоляция. Если животные различаются по суточным ритмам активности или если растения различаются по срокам цветения, то они лишены возможности обмениваться генетической информацией. Третий тип презиготической изоляции специфичен для полового процесса как такового. У многих животных выработались весьма сложные брачные церемонии, которые должны быть выполнены во всех деталях, для того чтобы могло совершиться спаривание и произошло слияние гамет. В некоторых случаях при этих церемониях происходит не только обмен слуховыми и зрительными сигналами, но также выделение самцом, самкой или обоими партнерами специфических феромонов или половых аттрактантов. Четвертый презиготический механизм заключается в физической несовместимости. Этот механизм связан с величиной и формой половых органов самца и самки. Например, у животных с внутренним оплодотворением половой член самца должен соответствовать строению половых органов самки, с тем чтобы было возможно введение спермы. У растений, опыляемых насекомыми, каждый вид связан с определенным видом опылителей, и успех опыления зависит от величины, формы, окраски и запаха цветка и его способности привлекать насекомых именно данного вида.

  • Читать дальше
  • 1
  • ...
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: